MINISTÈRE DE L'ENVIRONNEMENT ET DE LA LUTTE CONTRE LES CHANGEMENTS CLIMATIQUES

ÉVALUATION DU DANGER LIÉ À LA PRÉSENCE DE FILTRES UV ORGANIQUES DANS LE MILIEU AQUATIQUE

REVUE DE LA LITTÉRATURE

Coordination et rédaction Cette publication a été réalisée par le Centre d'expertise en analyse environnementale du Québec du ministère de l'Environnement et de la Lutte contre les changements climatiques (MELCC). Elle a été produite par la Direction des communications du MELCC.

Recherche et rédaction Nathalie Paquet¹, Division de l'écotoxicologie et de l'évaluation du risque, Direction des expertises et des études

Révision scientifique Mélanie Desrosiers¹, Division de l'écotoxicologie et de l'évaluation du risque, Direction des expertises et des études

Magali Houde², Division recherche sur les contaminants aquatiques, Direction générale des sciences et technologies

Gabriel Munoz³, Faculté des arts et des sciences, Département de chimie

Gaëlle Triffault-Bouchet¹, Division de l'écotoxicologie et de l'évaluation du risque, Direction des expertises et des études

1. Ministère de l'Environnement et de la Lutte contre les changements climatiques, Centre d'expertise en analyse environnementale.

- 2. Environnement et Changement climatique Canada.
- 3. Université de Montréal.

Renseignements

Pour tout renseignement, vous pouvez communiquer avec le Centre d'information.

Téléphone : 418 521-3830 1 800 561-1616 (sans frais)

Télécopieur : 418 646-5974

Formulaire : www.environnement.gouv.qc.ca/formulaires/renseignements.asp Internet : www.environnement.gouv.qc.ca

Pour obtenir un exemplaire du document :

Centre d'expertise en analyse environnementale du Québec du ministère de l'Environnement et de la Lutte contre les changements climatiques

2700, rue Einstein Québec (Québec) G1P 3W8 Téléphone : 418 643-1301

Ou

Visitez notre site Web : www.environnement.gouv.qc.ca.

Référence à citer

CENTRE D'EXPERTISE EN ANALYSE ENVIRONNEMENTALE DU QUÉBEC. 2022. Évaluation du danger lié à la présence de filtres UV organiques dans le milieu aquatique : revue de la littérature. Ministère de l'Environnement et de la Lutte contre les changements climatiques, 379 p., [En ligne],

www.environnement.gouv.qc.ca/developpement/strategie_gouvernementale/ /exemples_actions.pdf (page consultée le jour/mois/année).

Dépôt légal – 2022 Bibliothèque et Archives nationales du Québec ISBN 978-2-550-90949-1 (PDF)

Tous droits réservés pour tous les pays.

© Gouvernement du Québec - 2022

Table des matières

Lis	ste des tableaux	vi
Lis	ste des abréviations	_ vii
1.	Introduction	1
2.	Propriétés physicochimiques	3
3.	Devenir dans l'environnement	5
	3.1.Hydrolyse	5
	3.2.Volatilisation	5
	3.3.Sorption	5
	3.4.Biodégradation	5
	3.5.Photolyse et dégradation photocatalytique	7
	3.6.Ozonation	11
	3.7.Chloration	13
	3.8.Élimination des filtres UV dans les stations de traitement des eaux municipales	usées 16
4.	Concentrations environnementales	_ 17
	4.1.Eau de surface, eau de mer, eau interstitielle et glace	17
	4.2.Sédiment, sable et matière en suspension	18
	4.3.Affluents et effluents municipaux	19
	4.4.Boue	19
	4.5.Sol	19
	4.6.Eau souterraine	19
	4.7.Eau de piscine	20
	4.8.Eau du robinet	20
5.	Bioaccumulation dans les organismes	21
6.	Toxicité chez les organismes aquatiques	25
	6.1.Potentiel toxique	25

	6.2.Potentiel génotoxique6.3.Potentiel de perturbation endocrinienne		
	6.3.1.	Induction de la vitellogénine (VTG)	30
	6.3.2.	Effets sur la reproduction des invertébrés	31
	6.3.3.	Effets sur la reproduction des organismes benthiques exposés à parti sédiments	r des 33
	6.3.4.	Effets sur la reproduction des poissons	34
	6.3.5.	Effets sur la reproduction des amphibiens	35
	6.4.Exposition	on à des mélanges de filtres UV	36
7.	Conclusion	s et perspectives	_ 39
8.	8. Références bibliographiques		

Liste des tableaux

Tableau 1 – Propriétés physicochimiques des dérivés de la benzophénone	_ 69
Tableau 2 – Propriétés physicochimiques des dérivés de l'acide p-aminobenzoïque	_ 75
Tableau 3 – Propriétés physicochimiques des dérivés du camphre	_ 76
Tableau 4 – Propriétés physicochimiques des dérivés du salicylate	_ 77
Tableau 5 – Propriétés physicochimiques des dérivés du cinnamate	_ 78
Tableau 6 – Propriétés physicochimiques des dérivés de la triazine	_ 79
Tableau 7 – Propriétés physicochimiques des dérivés du crylène	_ 80
Tableau 8 – Propriétés physicochimiques des dérivés du benzimidazole	_ 81
Tableau 9 – Propriétés physicochimiques des dérivés du dibenzoylméthane	_ 82
Tableau 10 – Propriétés physicochimiques du menthyl anthranilate	_ 83
Tableau 11 - Concentrations en filtres UV mesurées dans l'eau de surface, l'eau de mer et l	'eau
interstitielle	_ 84
Tableau 12 - Concentrations en filtres UV mesurées dans les sédiments, les sables et les matières	s en
suspension	147
Tableau 13 - Concentrations en filtres UV mesurées dans des affluents et effluents de stations	s de
traitement des eaux usées municipales	175
Tableau 14 – Concentrations en filtres UV mesurées dans les boues d'épuration	205
Tableau 15 – Concentrations en filtres UV mesurées dans les sols	218
Tableau 16 – Concentrations en filtres UV mesurées dans les eaux souterraines	220
Tableau 17 – Concentrations en filtres UV mesurées dans les eaux de piscine	224
Tableau 18 – Concentrations en filtres UV mesurées dans les eaux du robinet	231
Tableau 19 – Facteurs de bioconcentration (FBC) rapportés dans la littérature pour les filtres UV	235
Tableau 20 - Accumulation de filtres UV chez Mytilus galloprovincialis après une exposition de 30 j	ours
suivie d'une période de dépuration de 20 jours	240
Tableau 21 - Concentrations en filtres UV, telles qu'elles sont rapportées dans la littérature, chez	des
organismes aquatiques prélevés en milieu naturel	241
Tableau 22 - Données de toxicité disponibles quant aux effets des filtres UV pour les organis	mes
aquatiques	295
Tableau 23 – Génotoxicité des filtres UV pour les organismes aquatiques	364
Tableau 24 – Potentiel de perturbation endocrinienne des filtres UV pour les organismes aquatiques	369

Liste des abréviations

2HBP	2-hydroxybenzophénone
2,2'-DHBP	2,2'-dihydroxybenzophénone
2,4,4'-THBP	2,4,4'-trihydroxybenzophénone
3-BC	3-benzylidène camphor
3HBP	3-hydroxybenzophénone
4DHB	4,4'-Dihydroxybenzophénone
4-MBC	3-(4-méthylbenzylidène) camphor
4HBP	4-hydroxybenzophénone
4PB	4-phénylbenzophénone
AchE	Acétylcholinestérase
BH	Benzhydrol
BMDM	Butyl-méthoxy dibenzoylméthane
BP	Benzophénone
BP-1	Benzophénone-1
BP-2	Benzophénone-2
BP-3	Benzophénone-3
BP-4	Benzophénone-4
BP-6	Benzophénone-6
BP-7	Benzophénone-7
BP-8	Benzophénone-8
BP-9	Benzophénone-9
BP-10	Benzophénone-10
BP-12	Benzophénone-12
BS	Benzyl salicylate
CAT	Catalase
CE	Concentration d'une substance susceptible de causer un effet
CL	Concentration létale
CMEO	Concentration minimale avec effet observé
CSEO	Concentration sans effet observé
DHHB	Diéthylamino hydroxybenzoyl hexyl benzoate
DBT	Diethylhexyl butamido triazone
DRO	Dérivés réactifs de l'oxygène
EcR	Ecdysone
EHMC	2-éthylhexyl 4-méthoxycinnamate

EHS	2-éthylhexyl salicylate
Eto	Étocrylène
Et-PABA	Ethyl PABA
FBA	Facteur de bioaccumulation
FBC	Facteur de bioconcentration
f _{oc}	Fraction en carbone organique
GPx	Glutathion peroxydase
GR	Glutathion réductase
GSH	Glutathion
GST	Glutathion S-transférase
HS	Homosalate
Hsp70	Protéines de choc thermique
IMC	Isoamyl 4-méthoxycinnamate
K _D	Coefficient de partage solide/eau
Koc	Coefficient de partage carbone organique/eau
Koe	Coefficient de partition octanol/eau
LDH	Lactate déshydrogénase
LPO	Peroxydation lipidique
MA	Menthyl anthranilate
MDA	Malondialdéhyde
MOD	Matière organique dissoute
OC	Octocrylène
OD-PABA	Octyl diméthyl PABA
ОТ	Octyl triazone
PABA	Acide para-aminobenzoïque
PBSA	Acide 2-phénylbenzimidazole-5-sulfonique
PDT	Acide phényldibenzimidazole tétrasulfonique
SOD	Superoxyde dismutase
TEAS	Trolamine salicylate
ТНВ	2,3,4'-trihydroxy benzophénone
TMF	Facteur d'amplification par voie trophique
UV	Ultraviolet
VTG	Vitellogénine

1. Introduction

Le rayonnement ultraviolet (UV) est un rayonnement électromagnétique caractérisé par une longueur d'onde plus courte que celle de la lumière visible. Il ne peut donc pas être observé à l'œil nu. Les UV peuvent être classés dans trois catégories en fonction de leur longueur d'onde, c'est-à-dire UVA (320-400 nm), UVB (290-320 nm) et UVC (100-280 nm). En raison de la présence de la couche d'ozone et de l'atmosphère, plus de 90 % des UV atteignant la surface de la Terre sont des UVA (Kim et Choi, 2014). Les UVA peuvent pénétrer profondément dans l'épiderme et le derme de la peau, contribuant à la destruction des fibres de collagène et provoquant un photovieillissement prématuré. Bien que les UVB soleil que les UVA. Les UVB sont considérés comme responsables de la formation de radicaux libres qui altèrent la structure des protéines, ce qui peut mener à des dommages à l'ADN, donc au cancer de la peau (Rykowska et Wasiak, 2015). Les UVC sont quant à eux complètement filtrés par l'atmosphère et n'atteignent pas la surface de la Terre.

L'exposition quotidienne au soleil et la prise de conscience des risques y étant associés ont accru l'utilisation de produits de soins personnels contenant des filtres ultraviolets. En plus d'être retrouvés dans les écrans solaires, les filtres UV sont incorporés dans les cosmétiques, comme les lotions pour la peau, les crèmes après-rasage, les laques, les shampoings, les rouges à lèvres ainsi que les vernis, les vêtements ou les récipients alimentaires plastiques (Almeida et collab., 2013). Les concentrations mondialement autorisées de filtres UV dans les cosmétiques se situent entre 0,1 % et 10 % (Rodil et Moeder, 2008a; Ramos et collab., 2015; Mao et collab., 2019). Le pourcentage de filtre UV ajouté dépend du degré (FPS, facteur de protection solaire) et du spectre de protection (UVA, UVB et UVC) désirés.

Les filtres UV, généralement utilisés en combinaison pour protéger des spectres UVA, UVB et UVC, peuvent être de nature organique ou inorganique. L'action des filtres UV inorganiques, comme le dioxyde de titane et l'oxyde de zinc, est de disperser et de réfléchir les rayonnements ultraviolets, tandis que l'action des filtres UV organiques, tels les dérivés de la benzophénone, du camphre ou du salicylate, est basée sur leur absorption (Giokas et collab., 2007, Klimová et collab., 2013). Les filtres UV organiques sont composés de structures aromatiques simples ou multiples conjuguées à de doubles liaisons carbone-carbone ou des groupements carbonyle. Cette configuration permet une délocalisation d'électrons, ce qui leur confère une absorption molaire élevée dans les gammes UVA et UVB (Bu et collab., 2017; Chisvert et collab., 2018). L'action de ces substances se fait donc par la formation d'une fine couche sur la surface où le produit est appliqué, bloquant la pénétration de la lumière UV et protégeant la peau et les matériaux d'une forte exposition au rayonnement solaire.

À la suite de leur application, une quantité considérable de filtres UV peut se retrouver dans l'eau lors des activités de baignade. Une modélisation estime qu'environ 25 % de l'écran solaire appliqué sur la peau est relâché au contact direct avec l'eau (Hernández-Pedraza et collab., 2020). Par ailleurs, une quantité résiduelle peut se retrouver dans les eaux usées domestiques en raison de différentes activités, telles que la douche, l'utilisation des produits contenant des filtres UV comme les shampoings, ainsi que lors du lavage des vêtements ayant été en contact avec les filtres solaires.

Selon l'efficacité du traitement des eaux usées dans les stations d'épuration, une quantité variable de filtres UV pourrait être rejetée dans le milieu aquatique par les effluents municipaux. En effet, même si certains produits pharmaceutiques et de soins personnels peuvent être dégradés par les processus biotiques ou abiotiques, la plupart des filtres UV organiques sont hydrophobes et sont donc peu dégradés pendant le traitement des eaux usées. Le taux d'enlèvement varie d'une molécule à l'autre, selon leurs propriétés intrinsèques. De plus, en raison de leurs propriétés lipophiles, ils peuvent s'adsorber aux matières en suspension, aux sédiments, ainsi que sur les boues d'épuration et, éventuellement, contaminer des sols après l'épandage de celles-ci (Benedé et collab., 2014a). Enfin, lors de surverses ou lorsque la municipalité ne dispose d'aucune installation de traitement, les eaux usées, potentiellement chargées en filtres UV, sont directement rejetées dans le cours d'eau récepteur. Le rejet des eaux usées urbaines traitées ou non dans l'environnement constitue donc une source ponctuelle potentielle de filtres UV dans le milieu aquatique.

Une fois dans l'environnement, les filtres UV peuvent être toxiques chez les organismes exposés. En effet, plusieurs études ont mis en évidence qu'ils peuvent interférer avec le système endocrinien et occasionner un dysfonctionnement de la reproduction et de la croissance chez les organismes exposés (Kim et collab., 2014; Wang et collab., 2016). Les filtres UV ont également été liés au blanchiment des récifs coralliens (Danovaro et Corinaldesi, 2003). De plus, certaines de ces substances sont lipophiles, ce qui signifie qu'elles ont un potentiel élevé de bioaccumulation dans les organismes vivants (Fent, Kunz et collab., 2010; Bachelot et collab., 2012; Picot Groz et collab., 2014).

Considérant l'ensemble de ces informations, différents États ont légiféré dans le but de minimiser l'exposition des organismes aquatiques endémiques à ces filtres UV. À Hawaii, un projet de loi interdisant la vente et la distribution d'écrans solaires ou de produits personnels ou de soins corporels contenant de la benzophénone-3 (BP-3) et du 2-éthylhexyl 4-méthoxycinnamate (EHMC) a été adopté en mai 2018. L'interdiction entrera en vigueur en 2021. Il en est de même à Key West, en Floride. La République de Palau et les îles Vierges américaines ont également interdit ces deux filtres UV, ainsi que l'octocrylène (OC). Certains parcs marins du Mexique (ex. : Xel Ha, Garrafon, Xcaret et Chankanaab) n'autorisent pour leur part que l'utilisation d'écrans solaires biodégradables.

Cette revue de littérature a pour objectifs : 1) de déterminer le devenir des filtres UV dans l'environnement aquatique ; 2) d'établir un état de la contamination de l'environnement par les filtres UV ; 3) d'inventorier les données de bioaccumulation et de toxicité (potentiel toxique, génotoxique et de perturbation endocrinienne) disponibles pour chacune de ces substances pour la faune et la flore aquatiques ; 4) d'établir, sur la base de ces informations, s'il existe un potentiel de danger associé à la présence des filtres UV dans l'environnement aquatique et si des études doivent être entreprises pour compléter les données disponibles. Cette revue porte exclusivement sur les filtres UV organiques. Les données récoltées dans la littérature sont résumées dans les sections suivantes.

2. Propriétés physicochimiques

Les filtres UV organiques peuvent être regroupés en neuf familles chimiques :

- les <u>dérivés de la benzophénone</u>, qui contiennent deux cycles benzéniques reliés par un groupe carbonyle;
- les <u>dérivés de l'acide p-aminobenzoïque</u>, constitués d'un cycle benzénique substitué par un groupe amino et un groupe carboxyle en position para;
- les dérivés du camphre, appartenant à la grande famille des terpénoïdes;
- les dérivés du salicylate, qui contiennent un groupe acide monohydroxybenzoïque;
- les dérivés de cinnamate, des acides carboxyliques insaturés;
- les <u>dérivés de la triazine</u>, constitués d'un cycle benzénique et de trois carbones remplacés par des atomes d'azote;
- les dérivés du crylène, des acrylates aromatiques;
- les <u>dérivés de benzimidazole</u>, des dérivés de composés organiques aromatiques hétérocycliques ayant un cycle benzène et imidazole fusionnés;
- les <u>dérivés de dibenzoylméthane</u>, dérivés du 1,3-diketone aromatique d'acétone, dans lequel les groupes méthyles ont été remplacés par les groupes phényles.

Pour les besoins de cette revue de littérature, le benzhydrol (BH) a été inclus dans la famille des benzophénones, parce qu'il s'agit d'un métabolite qui résulte de la réduction de la benzophénone. Le menthyl anthranilate a de plus été inclus, puisqu'il est approuvé par la Food and Drug Administration aux États-Unis pour une utilisation dans les produits de protection solaire en vente libre.

Quelques propriétés physicochimiques des composés entrant dans chacune des familles chimiques des filtres UV sont présentées dans les tableau 1 tableau 10.

La masse molaire des filtres UV à l'étude varie entre 137,1 g/mol pour l'acide para-aminobenzoïque (PABA) et 768,98 g/mol pour le diethylhexyl butamido triazone (DBT), un dérivé de la triazine.

La pression de vapeur est une donnée physique qui évalue la présence en phase gazeuse (pression partielle) d'une substance également présente sous forme liquide ou solide. Si la pression de vapeur est élevée, la substance aura tendance à être volatile. D'après les données disponibles, les pressions de vapeurs des filtres UV à l'étude sont largement inférieures à 1 mm Hg, ce qui signifie que ces substances sont peu susceptibles de se volatiliser. La distribution de ces composés dans l'atmosphère est donc limitée.

Le coefficient de partition octanol/eau (K_{oe}) traduit le caractère lipophile d'un composé et permet d'estimer sa capacité de pénétration dans les membranes biologiques. Les substances lipophiles sont caractérisées par un log K_{oe} supérieur à 4. Les logs K_{oe} du menthyl anthranilate, des dérivés du camphre, du salicylate, du cinnamate, de la triazine, du crylène et du dibenzoylméthane sont supérieurs à 4 et laissent supposer de grandes affinités de ces composés avec la matière organique (Kim et Choi, 2014). Les dérivés du benzimidazole et la majorité des dérivés de la benzophénone possèdent un log K_{oe} plus faible, ce qui suggère une affinité réduite.

Le coefficient de partage solide/eau (K_D) traduit l'affinité du composé pour une matrice environnementale solide (sols, sédiments, matières en suspension) par rapport à une matrice aqueuse (eau de surface par exemple). Le log des coefficients de partage carbone organique/eau (K_{oc}) est une façon d'exprimer la répartition d'un composé entre un compartiment solide (ex. : sols, sédiments) et l'eau, mais en ne considérant que la partie organique (K_{oc} = K_D/f_{oc}, où f_{oc} est la fraction en carbone organique de la phase solide considérée). Plus la valeur du K_{oc} est élevée, plus l'aptitude de la molécule à être adsorbée sur la

matière organique du sol ou des sédiments sera importante – un K_{oc} élevé pourrait également impliquer une biodisponibilité et une mobilité moins importantes dans l'environnement aquatique. Le menthyl anthranilate, les dérivés du camphre, du salicylate, du cinnamate, de la triazine, du crylène et du dibenzoylméthane ont des logs K_{oc} relativement élevés (supérieurs à 3). C'est ce qui explique en partie que certains filtres UV organiques seraient persistants en milieu aquatique (Juliano et Magrini, 2017).

Les valeurs de solubilité dans l'eau de certains dérivés de la benzophénone (p. ex., BP-2 et BP-4) et de l'acide p-aminobenzoïque (PABA et Et-PABA) montrent qu'ils sont très solubles, comparativement aux autres familles de filtres UV organiques. Pour les dérivés de la benzophénone, la solubilité dans l'eau varie de 0,037 mg/l pour la BP-12 à 250 000 mg/l pour la BP-4, selon la présence du groupe méthoxy (Mao et collab., 2019). Les dérivés du camphre, du salicylate et du cinnamate sont faiblement solubles, tandis que les dérivés de triazine et de crylène ne sont pas solubles, ce qui laisse présager qu'ils seront peu retrouvés dans les plans d'eau.

3. Devenir dans l'environnement

3.1. Hydrolyse

L'hydrolyse ne devrait pas être un processus important dans le devenir environnemental des dérivés de la benzophénone et de certains dérivés de l'acide p-aminobenzoïque (PABA et Et-PABA) puisque ces substances ne contiennent pas de groupes fonctionnels qui s'hydrolysent dans des conditions environnementales (HSDB, 2020). Il en est de même des dérivés du camphre (4-MBC et 3-BC) (Sakkas et collab., 2009; Liu et collab., 2013), de l'acide 2-phénylbenzimidazole-5-sulfonique (PBSA) (Ji et collab., 2013a; Ji et collab., 2013b) et des dérivés de cinnamate tels que le 2-éthylhexyl 4-méthoxycinnamate (EHMC) (Liu et collab., 2013). En revanche, l'OD-PABA peut subir une hydrolyse dans l'environnement pour produire de l'acide p-(diméthylamino)benzoïque (DMABA) et son tautomère zwitterionique (DMABA-ZW) (Studzinski et collab., 2017).

3.2. Volatilisation

Selon leurs propriétés physicochimiques, la volatilisation à partir de l'eau ne devrait pas constituer un processus important du devenir de la majorité des filtres UV organiques. Aucune volatilisation n'a été observée lors d'exposition en présence de la BP-3, d'EHMC, de 4-MBC et d'OC (Liu et collab., 2013). Seuls l'OD-PABA, le BS et l'EHMC présentent un potentiel de volatilisation, qui est atténué lors de l'adsorption aux particules.

3.3. Sorption

La partition des filtres UV organiques entre l'eau et les sédiments est fonction de leur degré de lipophilie, qui est estimé par les valeurs du coefficient de partition octanol-eau (log K_{oe}) (Volpe et collab., 2017). D'après leurs propriétés physicochimiques (p. ex., K_{oe}, K_{oc} estimé), en cas de rejet dans le milieu aquatique, la BP-1, la BP-2, la BP-3, l'OD-PABA, le BS, l'EHMC, le 4-MBC, l'OC et le BMDM devraient avoir tendance à se sorber aux matières en suspension et aux sédiments (HSDB, 2020). En revanche, la BP-4, le PABA et l'Et-PABA ne devraient pas se sorber aux matières en suspension et aux sédiments (HSDB, 2020). Leurs fortes solubilités indiquent qu'ils se retrouveraient principalement en solution dans la colonne d'eau.

Ces prédictions ont été vérifiées dans quelques études portant sur la sorption des filtres UV sur les boues des stations de traitement des eaux usées municipales. L'efficacité de sorption des benzophénones (BP-1, BP-3, BP-4 et BP-8) aux boues primaires était de 10 % à 26 % et de 7 % à 28 % en saison sèche et humide, respectivement (Tsui et collab., 2014a). La sorption était également faible pour la BP-3 (<5 %) et l'EHMC (<16 %) (Kupper et collab., 2006, Liu et collab., 2012a). Une élimination plus importante a été observée pour le 4-MBC et l'OC, où l'efficacité de sorption pouvait atteindre 54 % et 92 % (Kupper et collab., 2006, Liu et collab., 2016).

3.4. Biodégradation

Des études portant sur la biodégradation de certains filtres UV ont démontré la stabilité de la BP, de la BP-4, de la BP-12, de l'HS, du PBSA, de l'IMC et du 3-BC (Sakkas et collab., 2009; Gago-Ferrero et collab., 2012).

Les dérivés de la benzophénone sont généralement sujets à la biodégradation. Une biodégradation significative de la BP-1 (>90 %), de la BP-2 (>90 %) et de la BP-3 (>60 %) a été observée après une incubation de 24 heures dans des boues secondaires d'une station de traitement des eaux usées municipale (Kupper et collab., 2006; Wick et collab., 2011; Liu et collab., 2012b; Tsui et collab., 2014a). Dans un système de bioréacteur à membrane, jusqu'à 96 % de la BP-3 a été éliminé par biodégradation et par adsorption sur une période de 125 jours (Wijekoon et collab., 2013). Des études ont démontré que les conditions anaérobies sont plus favorables à la biodégradation de la BP-3 (demi-vie de 4,2 jours) que

les conditions aérobies (demi-vie de 10,7 jours) (Liu et collab., 2012b, Liu et collab., 2013). La demi-vie rapportée de la BP-3 dans des conditions réductrices, telles que la réduction des nitrates, la réduction des sulfates et la réduction du Fe³⁺, varie de 2,2 à 8,8 jours (Liu et collab., 2012b, Liu et collab., 2013). La BP-3 est biodégradée en BP-1 par déméthylation du substituant méthoxy (O-déméthylation), en conditions autant oxiques qu'anoxiques (Liu et collab., 2012b). De la BP-8 peut également être produite par hydroxylation aromatique.

Des microorganismes indigènes retrouvés dans des sédiments marins en Italie ont dégradé plus de 90 % d'une concentration jusqu'à 50 mg/kg d'OD-PABA sur une période de 16 mois, en conditions autant biotiques qu'abiotiques (Volpe et collab., 2017). Ce résultat démontre que ce composé est facilement biodégradable.

La biodégradation du 4-MBC est relativement lente, avec des demi-vies de 33 jours en conditions aérobiques et de 75 à 85 jours en conditions anaérobiques (Liu et collab., 2013). Sur une période de 16 mois, de 20 % à 70 % d'une concentration de 50 mg/kg de 4-MBC en conditions aérobiques et 40 % en conditions anaérobiques ont été dégradés par des microorganismes indigènes retrouvés dans des sédiments marins prélevés en Italie (Volpe et collab., 2017). La différence de dégradation est liée aux communautés microbiennes retrouvées dans les deux sédiments. La biodégradation était équivalente dans les boues secondaires des stations de traitement des eaux usées municipales, où l'élimination était de 38 % en saison sèche et de 77 % en saison humide (Tsui et collab., 2014a). Ces résultats suggèrent que le 4-MBC pourrait être un composé persistant, c'est-à-dire qu'il n'est pas susceptible de se biodégrader.

En utilisant un inoculum de boues activées non adaptées, l'EHMC s'est avéré facilement biodégradable selon la ligne directrice 301 F de l'Organisation de coopération et de développement économiques (OCDE), avec une dégradation de 78 % sur une période de 28 jours (HSDB, 2020). Ce résultat concorde avec celui qu'ont obtenu Liu et ses collaborateurs (2013), qui ont observé une biodégradation complète dans les sept jours suivant l'incubation dans la majorité des conditions d'oxydoréduction testées, ainsi que lors des traitements secondaires dans les stations de traitement des eaux usées municipales (Tsui et collab., 2014a; Kupper et collab., 2006; Ahmed et collab., 2017). Seules de légères différences de demi-vie ont été observées entre les différentes conditions: aérobie (1,3 j) < anaérobie (1,4 j) < réduction des sulfates (1,6 j) < réduction des nitrates (1,7 j) < réduction du Fe(III) (5,2 j).

L'OC présente une bonne dégradation biologique dans des microcosmes en aérobie et anaérobie, avec des demi-vies de 10,3 jours en conditions aérobies, de 11,6 jours en conditions de réduction des nitrates, de 13,2 jours en conditions de réduction des sulfates, de 22,0 jours en conditions anaérobies et de 24,1 jours en conditions de réduction du Fe³⁺ (Liu et collab., 2013). Plus de 70 % de ce composé a été dégradé après 77 jours d'incubation. Ce pourcentage est équivalent à ceux qui ont été obtenus dans un système de bioréacteur à membrane (MBR), où, sur une période de 125 jours, 67 % de l'OC a été éliminé (Wijekoon et collab., 2013), et dans un traitement de boues secondaires, où plus de 60 % de la charge initiale a subi une dégradation biologique (Kupper et collab., 2006, Liu et collab., 2012a, Tsui et collab., 2014a, Ahmed et collab., 2017).

En plus des bactéries, les filtres UV organiques peuvent être facilement dégradés par les champignons eucaryotes. Une dégradation complète par le champignon *Trametes versicolor* a été observée pour la BP-1, la BP-3 et le 4DHB sur une période de 24 heures, tandis que près de 90 % du 4-MBC, de l'OC et de l'EHMC ont été éliminés (Badia-Fabregat et collab., 2012; Gago-Ferrero et collab., 2012). Une réduction significativement plus faible a été observée pour la BP-3 (22 %) et le 4DHB (1 %) dans une autre étude utilisant le même champignon, la BP-1 montrant toujours une élimination complète après 26 jours (Rodriguez-Rodriguez et collab., 2012). D'autres filtres UV organiques ont également montré une dégradation significative dans cette étude (61 % pour le 4-MBC, 58 % pour l'OC, 70 % pour l'OD-PABA et 79 % pour l'EHMC). Pour améliorer l'efficacité du traitement, une réinoculation a été appliquée après 22 jours de traitement fongique (Rodríguez-Rodríguez et collab., 2014). Cette approche a amélioré l'élimination de la BP-3 de 22 %, mais pas celle du 4DHB et de l'OC (Rodríguez-Rodríguez et collab., 2014).

3.5. Photolyse et dégradation photocatalytique

Plusieurs chercheurs se sont penchés sur la photostabilité des écrans solaires et une dégradation limitée a été observée sous l'irradiation solaire en milieu aqueux dans diverses conditions de matière organique dissoute (MOD), de pH et de longueur d'onde/intensité UV. Les études sur la photodégradation de ces composés sont résumées dans les paragraphes suivants.

En milieu aquatique, certains filtres UV, dont la BP, la BP-1, la BP-2, la BP-3, la BP-4, le PABA, l'Et-PABA, l'OD-PABA, le BS, l'EHMC et le BMDM, pourraient être dégradés par photolyse directe par la lumière du soleil en raison de leurs chromophores qui absorbent des longueurs d'onde supérieures à 290 nm (HSDB, 2020). Malgré cela, les états photoactivés des filtres UV sont très stables, ce qui leur permet de transférer l'énergie absorbée de la lumière vers la chaleur sans perdre leur structure. Par conséquent, la photolyse utilisant la lumière UV naturelle ou artificielle montre une faible efficacité pour la majorité de ces composés.

Sur une période de 4 heures d'irradiation solaire simulée, le 2HBP, à une concentration de 2 mg/l, est complètement dégradé en présence de 0.6 g/l de nitrates (Ge et collab., 2019). En 30 minutes, le pourcentage d'élimination par photodégradation de 13.75 mg/l de 4DHB en présence de 10 mg/l d'H₂O₂ était de 37,7 %, et celui de la BP atteignait 74,9 % (Du et collab., 2018). Pour ces deux substances, le taux de dégradation diminuait avec l'augmentation de la concentration initiale, celui-ci étant respectivement de 30,6 % et 56,6 % pour une concentration de 22,5 mg/l et de 47,8 % et 18,2 % pour une concentration de 31,25 mg/l. Le taux de dégradation plus faible pour le 4DHB peut s'expliquer par la présence additionnelle d'un groupement di-hydroxyle sur le cycle de la BP, occasionnant un effet d'encombrement stérique qui rend la dégradation du 4DHB plus difficile. La photodégradation de la BP en présence d'H₂O₂ a engendré 15 produits de transformation (BP-OH, BP-2OH-a, BP-2OH-b, BP-3OH, Pr138-a, Pr138-b, Pr110-a, Pr-110b, acide benzoïque, acide glycoligue, acide oxaligue, acide malonigue, acide tartronigue, acide malique, acide 2-butènedioïque), et 13 pour le 4DHB (4DHB-OH, 4DHB-2OH-a, 4DHB-2OH-b, 4DHB-3OH, Pr152, Pr138-b, acide benzoïque, acide glycolique, acide oxaligue, acide malonique, acide tartronique, acide maligue et acide 2-butènedioïgue) (Du et collab., 2018). Ceux-ci ont été produits par une série de réactions activées par la génération de radicaux libres OH se produisant au cours du processus, notamment l'hydroxylation, la carboxylation et le clivage du cycle, entraînant la formation de CO₂ et d'H₂O.

En présence de 0,6 g/l de nitrate à pH 8,0, la photodégradation de la BP-1 a un taux de minéralisation de 31,6 % après 12 heures d'irradiation (Ge et collab., 2019). Quatre principales voies de transformation ont été proposées : une hydroxylation, une nitrosylation, une nitration et une dimérisation. Dans une précédente étude, l'élimination de la BP-1 était plus élevée, avec un pourcentage de dégradation de 62 % après 24 heures d'exposition aux rayonnements UV (Kotnik et collab., 2016), tandis que ce composé était complètement dégradé après la même durée d'exposition à un rayonnement solaire simulé (Gago-Ferrero et collab., 2012). L'ajout d'un catalyseur, sous forme de Fe²⁺, à une teneur de 40 mg/l, entraîne une élimination de 90 % (Zúñiga-Benítez et Peñuela, 2018). Dix produits de transformation ont été identifiés lors du processus de photodégradation de la BP-1, à savoir le 2,2',4-trihydroxybenzophénone, le 2,2', 4,4'-tétrahydroxybenzophénone, le benzaldéhyde, la résorcine, le 4-méthylphénol, le phénol, le 2-méthylphénol, le 2-hydroxybenzaldéhyde, l'acide acétique et l'acide formique (Gago-Ferrero et collab., 2012; Zúñiga-Benítez et Peñuela, 2018). Ceux-ci sont formés par une substitution électrophile entre le radical hydroxyle et le cycle benzénique, suivie d'une hydroxylation, d'un clivage du cycle aromatique et d'une oxydation. Une grande quantité de matière organique ralentit la vitesse de réaction de ce composé, alors qu'un pH alcalin l'accentue (Zúñiga-Benítez et Peñuela, 2018).

Par photocatalyse, la BP-2 est complètement éliminé (Zúñiga-Benítez et Peñuela, 2018). Neuf produits de transformation sont générés : le benzaldéhyde, la résorcine, le 1,2,3-benzènetriol, le 4-méthylphénol, le phénol, le 2-méthylphénol, le 2-hydroxybenzaldéhyde, l'acide acétique et l'acide formique. Ces sous-produits proviennent principalement de l'hydroxylation de la BP-2.

De façon générale, la BP-3 est relativement stable en solution aqueuse après une exposition à la lumière UV et à la lumière artificielle du soleil (Liu et collab., 2011a, Gago-Ferrero et collab., 2012, Santos et collab., 2012, Kim et Choi, 2014, Gong et collab., 2015). Par exemple, seulement 8 % de la BP-3 était dégradé après 50 jours d'irradiation en laboratoire, le taux augmentant à 31 % en présence d'acide humique (Liu,

Ying et collab., 2011a). La photodégradation est accentuée en présence de rayonnements UV, 30 minutes d'irradiation à des rayonnements UVA et UVC étant capables d'éliminer 80 % d'une concentration de 1 g/l de la BP-3 (Celeiro et collab., 2018). En milieu naturel, la demi-vie de la BP-3 dans les eaux de surface en été, aux latitudes moyennes, est estimée à 15 jours, cette demi-vie augmentant avec la profondeur (Vione et collab., 2013). En hiver, la demi-vie dans les eaux de surface est de 8 à 10 fois supérieure, en raison des différences d'éclairement et du cycle jour/nuit (Vione et collab., 2013). En tenant compte des différentes conditions de l'environnement, notamment le taux de pénétration de lumière dans l'eau, une demi-vie moyenne de 2,4 ans dans les eaux de surface a été estimée pour cette substance (Semones et collab., 2017).

Le principal processus qui régit la dégradation photochimique de la BP-3 est la réaction avec des photooxydants transitoires, tels que les radicaux OH et des états excités triplets de la matière organique dissoute (MOD) (Vione et collab., 2013; Gong et collab., 2015; Li, Qiao et collab., 2016; Semones et collab., 2017). La photodégradation de la BP-3 est donc plus importante en eau douce qu'en eau salée, en raison de la prédominance de MOD (Kotnik et collab., 2016, Li, Qiao et collab., 2016). L'O₂ joue un rôle négligeable dans sa photodégradation en raison de sa faible réactivité (Li, Qiao et collab., 2016). Le NaCI réduit considérablement l'efficacité d'élimination de la BP-3, tandis que les ions Br⁻ l'accentuent (Yang et Ying, 2013). L'oxydation photocatalytique peut également dégrader efficacement la BP-3 :

- La dégradation de 1 mg/l de BP-3 est optimale après 300 minutes d'irradiation en présence de 1,18 g/l de dioxyde de titane (TiO₂) et 128,07 mg/l de peroxyde d'oxygène (H₂O₂) (Zúñiga-Benítez et collab., 2016).
- La catalyse par l'ajout de Cu-Mn-O sous forme de Cu_{1.4}Mn_{1.6}O₄, de Mn₃O₄ ou de Mn₂O₃ peut dégrader jusqu'à 81,5 % de la concentration initiale de BP-3 après 240 minutes d'exposition (Zhang, Guo et collab., 2017).
- Ce pourcentage était plus élevé en présence de 500 mg/l de ferrite de cobalt (CoFe₂O₄), où l'élimination de 0,3 mg/l de BP-3 en 6 heures a atteint 91 % (Pan et collab., 2017).
- En 120 minutes sous irradiation UVC, une concentration de 4,5 mg/l de BP-3 est complètement dégradée en présence de 0,75 g/l de PbO/TiO₂, alors que la photodégradation était négligeable en l'absence de catalyseur (Wang et collab., 2019). Il en est de même à la suite de 4 heures d'irradiation solaire simulée en présence de 0,6 g/l de nitrates (Ge et collab., 2019).

La dégradation de la BP-3 est dépendante du pH, le pH optimal variant en fonction des conditions (Gong et collab., 2015; Li, Qiao et collab., 2016, Zúñiga-Benítez et collab., 2016, Zuniga-Benitez et collab., 2018). Un pH plus élevé favorise une plus grande dégradation en raison de l'augmentation de la concentration des ions OH⁻ (Zúñiga-Benítez et collab., 2016; Zuniga-Benitez et collab., 2018). Outre la BP-1 qui est produite par la déméthylation de la BP-3, neuf autres produits de transformation de la BP-3 ont été identifiés, à savoir la BP-8, le benzaldéhyde, le 1,3-dihydroxybenzène, le 4-méthylphénol, l'acide benzoïque, le 2-méthylphénol, le 2-hydroxybenzaldéhyde, le 1-méthyl-2-(phénylméthoxy)-benzène et l'alcool benzylique (Zúñiga-Benítez et collab., 2016). Le 2,4-diméthylanisole a également été identifié comme un photoproduit de la BP-3, généré par le clivage des groupes fonctionnels hydroxy et benzoyle (Liu et collab., 2011a).

La BP-4 est retrouvée dans les eaux de surface sous deux formes prédominantes, la forme déprotonée simple (HA-) et la forme déprotonée double (A²⁻) (De Laurentiis et collab., 2013). La photolyse directe de la forme HA- se produit par rupture homolytique de la liaison O-H du groupe phénolique, pour donner le radical phénoxy correspondant. Dans les eaux de surface, la forme A²⁻ serait dégradée jusqu'à trois fois plus vite que la forme HA-, en raison d'une photolyse directe plus efficace grâce à la fois à une meilleure absorption de la lumière solaire et à un rendement quantique plus élevé en photolyse (De Laurentiis et collab., 2013). La présence de MOD et de Br²⁻ peut influencer la vitesse de dégradation. Ainsi, la réaction avec Br²⁻ pourrait être une voie de transformation potentiellement importante de la BP-4 dans les milieux riches en bromure, tel que l'eau de mer (De Laurentiis et collab., 2013). La demi-vie de la BP-4 aux latitudes moyennes en été serait de l'ordre de quelques jours à quelques semaines (De Laurentiis et collab., 2013; Semones et collab., 2017). Elle peut atteindre jusqu'à 3,5 ans dans certaines conditions

environnementales, notamment lorsque la pénétration de la lumière est limitée dans la colonne d'eau (Semones et collab., 2017).

Une modélisation photochimique, fondée sur des données de photoréactivité à pH 7,5, suggère qu'en eau douce la BP-4 est principalement sujette à une dégradation par réaction avec des radicaux hydroxyles (HO•) et par photolyse directe (De Laurentiis et collab., 2013). Après 30 minutes d'irradiation, la photolyse directe de la BP-4, sous un rayonnement UVA ou UVC, en utilisant deux concentrations initiales différentes (12 mg/l et 1.4 g/l), était respectivement de 63/40 % et 49/53 %, Elle atteignait 98 % lors de l'ajout de TiO₂ (Celeiro et collab., 2018). D'ailleurs, l'ajout d'agents oxydants favorise la photodégradation de la BP-4. Par exemple, 1 g/l de catalyseurs d'azote (N) et de soufre (S) co-dopés de nanotubes de carbone multi-parois (NTC) dégrade complètement la BP-4 en 30 minutes (Liu, Sun et collab., 2016). L'utilisation d'H₂O₂ génère 12 produits de transformation, incluant l'acide 5-benzoyl-2,4-dihydroxybenzènesulfonique (Pr294), le (2,5-dihydroxy-4-méthoxyphényl)(phényl)méthanone (Pr244), le (2-hvdroxv-4-méthoxvphénvl) (phényl)méthanone (Pr228). la (2,4-dihydroxyphényl)-(phényl)méthanone (Pr214). l'acide hydroxybenzoïque (Pr138), l'acide benzoïque (Pr122), l'acide éthane-dioïque, le 1,2-propanediol et le 1,2-dihydroxypropane (Peng et collab., 2017). Ceux-ci sont engendrés par une série de réactions déclenchées par les radicaux HO•, y compris l'hydroxylation, la dihydroxylation, la décarboxylation, la déméthylation et la rupture de cycle, conduisant à la minéralisation totale de la BP-4.

Avec des demi-vies plus courtes que dans l'eau distillée, la photodégradation de la BP-8 est supérieure dans l'eau prélevée dans un lac (Kotnik et collab., 2016). En effet, la demi-vie de la BP-8 dans l'eau distillée était environ dix fois plus longue que dans l'eau du lac (38,9 et 3,35 jours, respectivement). L'augmentation des taux de photodégradation de ce dérivé de la benzophénone dans l'eau du lac résulte probablement de la présence de photosensibilisateurs, qui produisent diverses espèces réactives pendant l'irradiation solaire.

La photodégradation de la BP-9 en présence d'H₂O₂ engendre 17 produits de dégradation (Peng et collab., 2017). La substitution d'un groupe sulfonique par un groupe hydroxy conduit à la génération de l'acide 5-(2,5-dihydroxy-4-méthoxybenzoyl)-4-hydroxy-2-méthoxybenzène sulfonique (Pr370), et une réaction de désulfonylation conduit à formation de l'acide 4-hydroxy-5-(2-hydroxy-4-méthoxybenzoyl)-2méthoxybenzènesulfonique (Pr354). Le Pr354 peut perdre un groupe -CH₃ par substitution d'un groupe méthoxy par un groupe hydroxyle, ce qui produit l'acide 5-(2,4-dihydroxybenzoyl)-4-hydroxy-2méthoxybenzènesulfonique (Pr340). Le groupe cétone de la BP-9 peut être clivé par -OH pour produire l'acide 5-formyl-4-hydroxy-2-méthoxybenzènesulfonique (Pr232). Sous l'attaque continue de -OH, des intermédiaires aromatiques peuvent aussi être générés, tels que l'acide 4.5-dihvdroxv-2-méthoxybenzènesulfonique (Pr220), l'acide 2,5-dihydroxy-4-méthoxybenzoïque (Pr184). le 2-méthoxybenzène-1,4-diol (Pr140) et le méthoxyphénol (Pr124). Au stade final de la dégradation de la BP-9, le cycle benzénique peut être clivé pour produire de petits composés linéaires, dont le 1,2-dihydroxypropane, l'acide glycolique, l'acide éthane-dioïque et l'acide propane-dioïque.

En général, la photolyse directe est la principale voie de photodégradation du PABA dans les eaux naturelles (Zhou et collab., 2013). L'ajout de 0,5 g/l de TiO₂ ou de H₂O₂ accentue la photodégradation de ce composé, de 80 à 100 % étant dégradé 210 minutes suivant son irradiation (Tsoumachidou et collab., 2016). En revanche, la présence de MOD inhibe cette photolyse, principalement en raison de son effet protecteur contre la lumière (Zhou et collab., 2013). La dégradation du PABA se produit par di(tri)-polymérisation, engendrant des radicaux intermédiaires comme principaux produits de transformation (Zhou et collab., 2013). Ces produits incluent l'aniline, formée par décarboxylation (-COOH), ainsi que le 2-aminophénol, l'hydroquinone et le méthyl 4-aminobenzoate, formés par hydroxylation (insertion -OH) (Tsoumachidou et collab., 2016).

La photolyse directe de l'Et-PABA induit 17 % de dégradation de ce filtre UV après 50 heures de réaction (Li et collab., 2017). Le taux de dégradation augmente jusqu'à 88 % en présence de 80 mg/l de TiO₂. La photocatalyse de l'Et-PABA est initiée par hydroxylation et déméthylation et soutenue par la déshydroxylation et le réarrangement de la molécule. Ce processus forme onze produits de transformation, incluant l'aniline, le PABA, le TP-136, le TP-152A, le TP-152B, le TP-168, le TP-182, le TP-184 et le TP-198.

L'OD-PABA est un composé considéré comme photolabile (Rodil et collab., 2009a). Dans l'environnement, sa demi-vie est inférieure à une semaine, même en profondeur (10 m) et à forte teneur en MOD (~15 mg C/I). La photodégradation de l'OD-PABA se produit par désalkylation, les sous-produits formés étant stables pendant plusieurs jours dans l'eau (Rodil et collab., 2009a, Calza et collab., 2016). Dans des conditions oxydantes, la photodégradation de 100 mg/l d'OD-PABA était de 40 % après 60 minutes, et de 80 % après 180 minutes (Studzinski et Gackowska, 2018). La déméthylation du groupe amino engendre trois principaux produits de transformation, à savoir le 4-aminobenzoate de 2'-éthylhexyle, le 2-éthylhexan-1-ol et le 4-(méthylamino) benzoate de 2'-éthylhexyle. La présence de formaldéhyde a également été rapportée, dans certaines conditions (Studzinski et collab., 2017).

Le 4-MBC est considéré par certains auteurs comme photostable en milieu aquatique, sa photolyse directe dans les eaux de surface étant jugée négligeable (Rodil et collab., 2009a; Sakkas et collab., 2009). La photoisomérisation du 4-MBC peut, néanmoins, se produire dans les eaux naturelles (Buser et collab., 2005; Lai et collab., 2020). En effet, grâce à sa double liaison carbone-carbone (styrène) exocyclique, le 4-MBC peut exister sous forme d'isomère cis-(Z)- et trans-(E)-. La majorité du 4-MBC retrouvé dans les crèmes solaires commerciales se retrouve sous l'isomère (E) seulement (Poiger et collab., 2004). Cependant, lors d'une exposition à la lumière solaire, le (E)-4-MBC est photochimiquement isomérisé de façon réversible en (Z)-4-MBC (Buser et collab., 2005, Rodil et collab., 2009a). Bien qu'il ne soit pas sujet à la photolyse directe du soleil, l'ajout de différentes concentrations de TiO₂ ou de H₂O₂ favorise la dégradation du 4-MBC. En effet, entre 49 % et 80 % de ce filtre UV étaient dégradés dans les 90 minutes suivant l'irradiation dans ces conditions (Sakkas et collab., 2009). La transformation du 4-MBC en présence de TiO₂ implique: (i) la déméthylation de la structure pontée de la fraction camphre, (ii) l'hydroxylation du fragment méthylbenzylidène et (iii) la réaction de bihydroxylation/déméthylation du fragment méthylbenzylidène. La dégradation en présence de TiO₂ (Sakkas et collab., 2009).

Plusieurs études ont fait état d'une photodégradation de l'EHMC en solution aqueuse sous irradiation solaire (Rodil et collab., 2009a; MacManus-Spencer et collab., 2011) ou sous lumière UV (Santiago-Morales et collab., 2013, Vione et collab., 2015, Jentzsch et collab., 2016). La demi-vie de ce filtre UV est estimée à 21 heures sous rayonnement solaire artificiel (Rodil et collab., 2009a), à 250 minutes sous rayonnement UVA et à 30 minutes sous rayonnement UVB (Vione et collab., 2015). Lors de l'ajout d'agents oxydants, tels que le H₂O₂/UV, la perte de ce dérivé du cinnamate était d'environ 60 % après 90 minutes, tandis qu'il était presque complètement dégradé après 3 heures (Studzinski et Gackowska, 2017). La photolyse directe est la principale voie d'élimination de ce composé, contrairement aux photooxydants transitoires, tels que les radicaux HO• et des états excités triplets de la MOD, qui jouent un rôle secondaire (Vione et collab., 2015). Les changements structuraux de l'EHMC produits sous irradiation solaire directe comprennent une photoisomérisation partielle de l'isomère Z en l'isomère E (MacManus-Spencer et collab., 2011; Studzinski et Gackowska, 2017; Rodil et collab., 2009a). Ces deux isomères peuvent former des produits de dégradation, comme le 4-méthoxybenzaldéhyde (4-MBA) et le 2-éthylhexanol (2-EH) (Vione et collab., 2015; Gackowska et collab., 2016; Stein et collab., 2017). Les données expérimentales indiquent également que la photolyse de l'EHMC dans l'eau peut mener à la formation de cyclodimères, tels que le truxinate et le truxillate, mais il n'existe aucune donnée sur leur occurrence et leur devenir dans l'environnement (MacManus-Spencer et collab., 2011; Hanson et collab., 2015, Stein et collab., 2017). En présence de rayonnements UV, plusieurs autres isomères oxydés et hydroxylisés peuvent être formés en solution aqueuse (Jentzsch et collab., 2016).

Comparativement à l'EHMC, l'IMC, un autre dérivé du cinnamate, est relativement peu photolabile (Rodil et collab., 2009a). En effet, lors d'une exposition continue de l'IMC au rayonnement solaire artificiel, l'IMC est resté assez stable en solution aqueuse, avec une demi-vie de 938,5 ± 31,1 minutes (Santos et da Silva, 2017). Ce long temps de dégradation ne permet pas sa transformation en sous-produit de photodégradation, bien qu'une isomérisation rapide de l'isomère E en l'isomère Z puisse être observée.

L'OC est photostable en milieu aquatique, sa photolyse directe dans les eaux de surface est considérée comme négligeable (Rodil et collab., 2009a; Sakkas et collab., 2009).

La photolyse directe ne devrait pas être une voie de dégradation importante dans le devenir environnemental de l'acide 2-phénylbenzimidazole-5-sulfonique (PBSA) en milieu naturel. Lorsqu'il est exposé à des rayons UVA ou UVC uniquement, moins de 30 % de dégradation du PBSA a été observée après une durée maximale d'irradiation de 285 minutes (Celeiro et collab., 2018; Abdelraheem et collab., 2015; Westphal et collab., 2020). Cette stabilité peut s'expliquer par deux phénomènes, à savoir : 1) le PBSA est un filtre UVB sélectif et, pour cette raison, la photolyse par les rayons UVA et UVC n'engendre que de faibles pourcentages de dégradation; et 2) la présence d'un groupe auxochrome sulfonique (-SO₃H) étend la conjugaison de leur caractère oléfinique, conduisant à une photostabilité plus élevée (Abdelraheem et collab., 2015). Des études ont par contre démontré que la photolyse de ce composé en milieu naturel est favorisée par des pH autant acides que basiques, tandis que la présence d'acide humique a un effet négatif (Ji et collab., 2013a; Santos et collab., 2012). La photolyse directe induit la désulfonation et le clivage du cycle benzimidazole, qui sont initiés par l'état triplet excité (3PBSA*) et le cation radical (PBSA++). La photolyse indirecte par les nitrates engendre des produits d'hydroxylation du PBSA et du 2-phényl-1H-benzimidazole, ainsi que des intermédiaires générés par l'ouverture de cycle (Ji et collab., 2013a). L'oxydation photocatalytique, par l'ajout d'H2O2 ou de TiO2, facilite la photodégradation du PBSA (Ji et collab., 2013b, Abdelraheem et collab., 2015). Par exemple, 0,1 g/l d'H₂O₂ élimine complètement 11 mg/l de PBSA après 180 minutes d'irradiation UVC (Abdelraheem et collab., 2015). La dégradation photocatalytique du PBSA en utilisant des nanoparticules d'oxyde de zinc dégrade jusqu'à 90 % du composé après 180 minutes, alors que celle-ci était de 18 % sans catalyseur (Soto-Vázquez et collab., 2017). L'ajout de Co_{0.1}Fe_{2.9}O₄ n'a éliminé que 24 % de la concentration initiale de PBSA en 240 minutes, alors que le CoFe₂O₄ a éliminé 75 % de ce composé dans le même temps de réaction (Al-Anazi et collab., 2018). Une dégradation photocatalytique complète du PBSA a été observée en 3 à 30 minutes en utilisant des catalyseurs LaCoO₃ modifiés (Pang et collab., 2016). Trois voies principales sont alors impliquées dans la dégradation photocatalytique du PBSA, à savoir l'hydroxylation successive du composé mère (voie I), le clivage du cycle imidazole (voie II) et la désulfonation ainsi que l'hydroxylation et l'oxydation supplémentaires (voie III) (Ji et collab., 2013b; Abdelraheem et collab., 2016; Westphal et collab., 2020). Les principaux intermédiaires incluent les produits mono- et di-hydroxylés, le benzamide, la benzamidine hydroxylée, le 2-phény-1H-benzimidazole hydroxylé ainsi que le dérivé phénylimidazolecarboxylique. Le groupe sulfonique du PBSA est principalement converti en ion sulfate tandis que les atomes d'azote sont libérés principalement sous forme d'ammonium et, dans une moindre mesure, de nitrate (Abdelraheem et collab., 2015).

Le BMDM existe sous deux formes tautomériques : l'énol-tautomère (ou forme énolique) et le céto-tautomère (ou forme céto). Dans une formulation d'écran solaire, le BMDM est retrouvé principalement sous forme d'énol, qui absorbe dans la gamme de longueurs d'onde des UVA. Cela fait en sorte que ce composé est relativement stable lors de processus d'irradiation, bien que sa photodégradation soit plus efficace dans des conditions photocatalytiques (demi-vie de 79 ± 13 minutes) que sous irradiation seule (demi-vie de 126 ± 16 minutes) (Wang et collab., 2017). Lors d'irradiation, la forme énol est photoisomérisée en forme céto, engendrant des photoproduits, tels que des acides benzoïques substitués. des benziles, des dibenzoylméthanes et des dibenzoyl éthanes, qui absorbent principalement dans la région des UVC (Mturi et Martincigh, 2008; Wang et collab., 2017). La formation de ces photoproduits implique des clivages primaires des liaisons des groupes carbonyles de la forme 1,3-dicéto, suivis par l'abstraction d'hydrogène, l'oxydation et la recombinaison radicale. L'utilisation combinée de la photolyse et de la chloration avec de l'hypochlorite de sodium engendre 25 produits de transformation, incluant le 2-chloro-1-(4-tert-butylphényl)-3-(4-méthoxyphényl)-1,3-propanedione, le 2,2-dichloro-1-(4-tertbutylphényl)-3-(4-méthoxyphényl)-1,3-propanedione), des chloroanhydrides et des chlorophénols (Trebse et collab., 2016). La quantité de produits formés dépend de la durée d'irradiation.

3.6. Ozonation

L'efficacité de l'élimination des dérivés de la benzophénone pendant le processus d'ozonation dépend de plusieurs paramètres, tels que la dose initiale d'ozone, la concentration initiale du composé et les propriétés physicochimiques du milieu :

- Dans le cas de la BP, l'ozonation de sa structure entraîne l'ouverture des cycles aromatiques et la production de groupes acétaldéhyde (Hopkins et collab., 2017).

- L'ozonation de 25 mg/l de BP-2 est corrélée au pH de la solution, l'élimination étant plus rapide en milieu alcalin qu'en milieu acide ou neutre (Wang, Wang et collab., 2018). L'ajout de 5 mg/l d'acide humique augmente la dégradation de la BP-2, tandis qu'une diminution de la dégradation est observée à des teneurs d'acide humique entre 5 et 100 mg/l. Le processus d'ozonation de la BP-2 entraîne la formation de quatorze produits intermédiaires, formés par la rupture du groupe carbanyle (liaison C(5)-C(7) et liaison C(7)-C(8)) et la coupure du cycle benzène.
- Hernández-Leal et ses collaborateurs (2011) ont montré que 94 % de la BP-3 était éliminé en 45 minutes en présence de 1.22 mg/l d'O₃ dans l'eau Milli-Q. Dans un effluent municipal de Tianjin, en Chine, 20 % d'élimination de 123 ng/l de BP-3 a été observé, sur une période de 180 minutes, en présence de 5 mg/l d'ozone (Li et collab., 2007). Il en est de même dans un effluent de Madrid, en Espagne, où Rosal et ses collaborateurs (2010) n'ont pas détecté d'élimination de 123 ng/l de BP-3 par 16,3 mg/l d'ozone en 15 minutes. Le pH influence largement la dégradation de ce composé en présence d'ozone (Gago-Ferrero, Demeestere et collab., 2013, Hopkins et collab., 2017). Des temps de demi-vie plus de deux fois plus courts ont été observés à pH 10 par rapport aux conditions neutres et acides (Gago-Ferrero, Demeestere et collab., 2013). Cette différence de réactivité peut s'expliquer par la déprotonation de la fraction phénolique. La déméthylation du groupe méthoxyphénol et l'hydroxylation des cycles aromatiques sont les deux voies de dégradation principales (Gago-Ferrero, Demeestere et collab., 2013, Guo et collab., 2016). L'ozonation de la BP-3 génère sept produits intermédiaires, dont la BP-1 et la BP-8. À l'exception de la BP-1, qui est le résultat de la déméthylation de la BP-3, tous les autres produits de dégradation identifiés sont des dérivés hydroxylés (Pr244a, Pr244b, Pr260a, Pr260b et Pr258), formés par une attaque non spécifique des radicaux HO• à différentes fractions de la molécule.
- Tout comme pour la BP-3, les voies de dégradation de la BP-4 par ozonation en solution aqueuse impliquent l'hydroxylation séquentielle du cycle aromatique et une déméthylation de la partie méthoxy (Liu, Sun et collab., 2016). La formation d'un cycle benzénique hautement hydroxylé est observée, en raison de la forte fraction d'acide sulfonique de la BP-4 qui attire les électrons. Cette dégradation engendre quatorze produits de transformation, nommés P1 à P14. Les conditions alcalines favorisent l'oxydation de la BP-4, la durée de demi-vie de ce composé étant d'environ 47 secondes à pH 7, tandis qu'elle atteignait 68 secondes à pH 5 et 102 secondes à pH 3 (Liu, Sun et collab., 2016). Cela peut s'expliquer par le fait que les ions hydroxyles catalysent la décomposition de l'ozone en radicaux OH à pH élevé. À pH 3, aucune formation de radicaux hydroxyles n'est attendue. En effet, l'ozone moléculaire est alors l'espèce réactive la plus importante, de sorte que la décomposition de la BP-4 est plus lente qu'en conditions neutres et alcalines. La présence d'anions inorganiques (Cl⁻, NO₃, SO₄²), de cations (K⁺, Ca²⁺, Mg²⁺) et d'acide humique n'a pas d'effet sur l'élimination de la BP-4 (Liu, Sun et collab., 2016).

La dégradation de 100 mg/l d'OD-PABA lors du processus d'ozonation était de 40 % après 60 minutes, et de 80 % après 180 minutes (Studzinski et Gackowska, 2018). Les produits de transformation identifiés incluaient l'acide 4-(méthylamino) benzoïque et le 2-éthylhexan-1-ol (Studzinski et Gackowska, 2018).

L'EHMC dans l'eau Milli-Q était complètement éliminé en 45 minutes en présence de 1,22 mg/l d'O₃ (Hernández-Leal et collab., 2011). Ce pourcentage était moindre dans un effluent, où l'ozonation n'a permis d'éliminer que 27 % de l'EHMC sur un intervalle de temps variant de 2 à 15 minutes (Rosal et collab., 2010). L'ozone réagit modérément vite avec la fraction oléfinique de l'EHMC pour former un ozonide (Hopkins et collab., 2017). La structure résultante se transforme en 4-méthoxybenzaldéhyde et en un peroxyalkyl zwitterion, qui réagit avec l'eau. Le 2-hydroperoxy-2-hydroxyacétate de 2-éthylhexyle qui en résulte perd du peroxyde d'hydrogène pour former le 2-oxoacétate de 2-éthylhexyle, qui se transforme à son tour en 4-méthoxybenzaldéhyde, ou 4-anisaldéhyde (Hopkins et collab., 2017, Studzinski et Gackowska, 2017).

Après 45 minutes, l'efficacité d'élimination du 4-MBC dans de l'eau Milli-Q en présence de 1,22 mg/l d'ozone était de plus de 99 %, tandis qu'après 60 minutes celle du PBSA était de 84 % (Hernández-Leal et collab., 2011).

L'OC réagit lentement lors du processus d'ozonation. L'ozone a été en mesure de dégrader 20 % d'une concentration de 114 ng/l d'OC, sur un intervalle maximal de 15 minutes (Rosal et collab., 2010). L'ozone attaque l'oléfine et génère l'ozonide, qui se transforme en 2-éthylhexyl cyano(oxo)formate et en peroxydiphénylméthane zwitterion (Hopkins et collab., 2017). L'eau réagit alors avec le zwitterion pour former de l'hydroperoxydiphénylméthanol. Ce composé instable perd du peroxyde d'hydrogène, formant ultimement de la benzophénone.

3.7. Chloration

Le chlore est l'oxydant le plus couramment utilisé pour la désinfection des eaux de piscine, ainsi que pour le traitement de l'eau potable.

Les dérivés de la benzophénone se dégradent rapidement en présence de chlore aqueux et les taux de dégradation dépendent notamment de la dose initiale, de la température et du pH (Duirk et collab., 2013; Manasfi et collab., 2015; Li, Ma et collab., 2016). Au cours du processus de chloration, les dérivés de la benzophénone sont sujets à plusieurs voies de transformation, telles que l'hydrolyse, la substitution méthoxylique, la substitution électrophilique, l'oxydation des groupes cétoniques, la décarboxylation et les réactions de clivage du cycle (Abdallah et collab., 2015, Li, Ma et collab., 2016).

La BP-1 contenant deux groupes hydroxyles en positions 2 et 4, elle génère, en présence de chlore aqueux, des dérivés de p-dihydroxybenzène, qui s'oxydent ensuite en chlorobenzoquinones (Sun et collab., 2019). Dix-neuf produits de transformation, identifiés P1 à P16, P1', P2' et P3', ont été recensés jusqu'à présent. Outre les produits chlorés, ceux-ci incluent des esters, des benzoquinones, des phénylbenzoquinones et des produits similaires aux hydrocarbures aromatiques polycycliques (HAP). Les voies de transformation proposées pour la BP-1 pendant le traitement par chloration consistent en : 1) une substitution électrophile du chlore, formant des analogues mono-, di- et trichlorés; 2) une oxydation de Baeyer-Villiger, qui convertit les biphénylcétones en esters phényliques correspondants; 3) une hydrolyse nucléophile des esters de phényle, générant des analogues phénoliques et les analogues d'acide benzoïque; 4) une décarboxylation, formant des dérivés chlorés par le remplacement des groupes carboxyles par des atomes de chlore; 5) des réactions de couplage C-C, formant des produits de type HAP; et 6) une oxydation de l'hydroquinone, formant des phénylbenzoquinones (Sun et collab., 2019). Ce processus est dépendant du pH et des concentrations initiales de chlore, des doses plus élevées accélérant la dégradation de ce composé.

La chloration de la BP-3 se produit très rapidement, indépendamment des réactifs de désinfection utilisés, tels que l'hypochlorite de sodium (NaClO), l'acide trichloroisocyanurique (TCCA) ou la chloramine (NH₂Cl) (Yang et collab., 2018; Zhuang et collab., 2013; Lee et collab., 2020), L'ajout d'un ligand inorganique influence la dégradation de la BP-3 par le chlore. C'est notamment le cas du brome, qui favorise sa dégradation. En effet, après un temps de réaction de 10 minutes, la dégradation de 0,35 mg/l de BP-3 en présence de 0,4 mg/l d'hypochlorite de sodium variait de 57 % à pH 7 (80 % à pH 8,5) en l'absence de bromure à environ 90 % après l'ajout de 80 µg/l de Br (Abdallah et collab., 2015). La présence d'ammoniac inhibe l'élimination de la BP-3 pendant la chloration par la formation de chloramines, qui sont des oxydants moins réactifs (Abdallah et collab., 2015). En présence de chlore aqueux, la BP-3 se transforme en sous-produits mono-, di- et trihalogénés, comme le 5-chloro-2-hydroxy-4-méthoxybenzophénone et le 3,5-dichloro-2-hydroxy-4-méthoxybenzophénone (Negreira et collab., 2008, Zhuang et collab., 2013). La BP-3 peut aussi subir le clivage de la liaison carbonyle et former plusieurs formes halogénées de 3-méthoxyphényle (Negreira et collab., 2008; Duirk et collab., 2013; Zhang, Wang et collab., 2016), ainsi que du chloroforme (Duirk et collab., 2013; Zhang, Wang et collab., 2016; Yang et collab., 2018). Lorsque le pH augmente de 6 à 10, la formation de chloroforme diminue. Cette tendance peut s'expliquer par la spéciation du chlore aqueux, HOCI en OCI-, ainsi que par la spéciation de la BP-3 en phénolate. Par conséquent, il y a moins de HOCI pour réagir avec la BP-3 lorsque le pH augmente, ce qui entraîne une formation moindre de chloroforme. Dans les eaux riches en bromure, la désinfection au chlore entraîne la formation de sous-produits mono- et dibromés (monobromo-, dibromo- et bromochlorobenzophénone), de formes di- et trihalogénées de 3-méthoxyphénol, tel que le 2,4,6-tribromo-3-méthoxyphénol, de l'hydrate

de brome, de dibromochlorométhane et de bromoforme (Negreira et collab., 2008; Manasfi et collab., 2015).

Lors du processus de chloration, la BP-4 est dégradée, en présence autant de chlore libre que de chloramine. En contact avec le chlore libre, l'élimination de la BP-4 était de 71 %, sur une période de 3 minutes, alors que le pourcentage était de 46 % avec la chloramine (Yang et collab., 2018). La chloramination de la BP-4 utilise les mêmes voies de transformation que la chloration :

- La première voie est la substitution de la BP-4 par le chlore, formant des analogues mono-, di- et trichlorés de la BP-4;
- La seconde voie est l'oxydation de type Baeyer-Villiger, qui transforme la diphénylcétone en dérivés d'esters phényliques;
- La troisième voie est l'hydrolyse de l'ester, générant des produits phénoliques et benzoïques correspondants;
- La quatrième voie est la décarboxylation, qui remplace le groupe carboxyle par du chlorure dans l'intermédiaire de type benzoïque;
- La cinquième et dernière voie est la désulfonation, qui dégrade le groupe sulfonique par substitution du chlore sur le cycle benzénique (Xiao et collab., 2013).

Lors de ce processus de transformation de la BP-4, quinze produits ont été identifiés, incluant le chloroforme et l'acide haloacétique (Xiao et collab., 2013). Les conditions de pH élevé facilitent la formation de chloroforme, mais inhibent celle d'acide haloacétique. La présence additionnelle de bromures occasionne une substitution électrophile de la BP-4, générant des produits mono- ou dihalogénés. Ceux-ci seraient ensuite oxydés en esters, puis hydrolysés en dérivés phénoliques. L'intermédiaire phénolique du catéchol généré subit une contraction des anneaux pour former des produits de type furane. Tout ce processus génère un total de 12 produits de transformation bromés (Xiao et collab., 2014). Lors d'un traitement de désinfection par chloration en présence d'ions iodure, la BP-4 engendre quinze produits halogénés, dont cinq sont des produits mono- ou diiodés (Yang et collab., 2017). Les mécanismes de transformation de la BP-4 en présence d'ions iodure impliquent une substitution électrophile par des HOI, générant des produits mono- ou dihalogénés (Yang et collab., 2017). Ceux-ci sont ensuite oxydés en esters, puis hydrolysés en dérivés phénoliques. La désulfonation et la décarboxylation sont également observées. La transformation de la BP-4 en présence d'ions iodure dépend fortement du pH, un pH basique accentuant la dégradation de ce composé (Yang et collab., 2017).

La dégradation de la BP-8 en présence de chlore libre peut atteindre 60 % des niveaux initiaux au bout de quatre minutes à pH neutre (pH = $6,2 \pm 0,5$) (Santos et da Silva, 2019). La réactivité de la BP-8 augmente avec une augmentation du pH, ce qui indique que la forme ionique du composé prédomine en solution sur sa forme neutre et ainsi réagit de manière plus significative avec l'anion hypochlorite (CIO-). La chloration de ce composé se fait essentiellement par substitution électrophile de l'atome de chlore sur les cycles benzéniques, formant des structures mono (CI-BP8) et dichlorée (CI2-BP8) de la BP-8. Tout comme dans le cas de la BP-3, la transformation de 0,2 mg/l de BP-8 en présence d'un excès de chlore aqueux mène à la formation de chloroforme (Duirk et collab., 2013). Cependant, la formation de ce produit de transformation augmente lorsque le pH passe de 6 à 10. Cette différence pourrait s'expliquer par le groupement 3-méthoxy et les fragments phénoliques ortho-substitués dans la structure moléculaire de la BP-8, qui sont moins réactifs avec le chlore aqueux que ceux de la BP-3.

La transformation du 4-hydroxybenzophénone (4HBP) en présence de chlore libre engendre sept produits de transformation, dont le 3,5-dichloro-4-HBP (Liu, Wei et collab., 2016). Les mécanismes de transformation impliquent la substitution électrophile par les atomes de chlore, l'oxydation Baeyer-Villiger des cétones, l'hydrolyse des esters et la rupture oxydative du cycle benzénique.

La réaction primaire de la chloration de 10 mg/l de DHHB consiste à : 1) remplacer un atome d'hydrogène en position trois du cycle phénolique par du chlore; et 2) chlorer le cycle phénolique après l'élimination simultanée du groupe éthyle de la partie amine (Grbović et collab., 2013). Ces réactions mènent à la

formation de deux produits de transformation chlorés, P1 et P2. P1 peut subir un autre processus de chloration, qui produit P3.

En présence de 0,75 g/l d'hypochlorite de sodium, 50 % de 100 mg/l d'OD-PABA étaient dégradés après 60 minutes. Après 180 minutes, la dégradation était d'environ 90 % (Studzinski et Gackowska, 2018). La chloration de ce composé, qui consiste en une substitution électrophile du chlore sur les ortho-carbones de la partie amino, engendre des analogues chlorés de l'OD-PABA, notamment le 2-éthylhexane-1-ol, le 3-chloro-4-hydroxybenzoate de 2'-éthylhexyle, le dichloro-4-hydroxybenzoate de 2'-éthylhexyle, le benzoate de 2'-éthylhexyle-4-(méthylamino), le chloro-4-aminobenzoate de 2'-éthylhexyle, le chloro-4-(diméthylamino) benzoate de 2'-éthylhexyle, le 2'-éthylhexyle chloro-4-(méthylamino) benzoate, le 2'-éthylhexyle dichloro-4-aminobenzoate, le 2'-éthylhexyle dichloro-4-(diméthylamino) benzoate et le 2'-éthylhexyle dichloro-4-(méthylamino) benzoate (Studzinski et Gackowska, 2018; Negreira et collab., 2008; Sakkas et collab., 2003; Nakajima et collab., 2009). Le formaldéhyde peut également être formé dans certaines conditions (Studzinski et collab., 2017). La vitesse de décomposition du composé et la quantité de sous-produits dérivés sont dépendantes du pH, l'OD-PABA étant plus stable à un pH de 8,2 qu'à des pH de 6,2 et 7,2 (Negreira et collab., 2008). La présence de traces de bromure lors du processus de chloration influence également la décomposition de ce composé, des niveaux similaires à ceux retrouvés dans les aquifères et les sources d'eau du robinet des zones côtières réduisant considérablement la demi-vie de l'OD-PABA (Negreira et collab., 2008).

En présence d'un excès de chlore aqueux, l'EHS présentait une réactivité minimale, montrant une réduction de la concentration inférieure à 40 % dans des conditions d'excès de chlore après 30 minutes (Negreira et collab., 2008).

Dans le cas de la chloration de l'EHMC, 60 % d'une concentration de 100 mg/l étaient dégradés après 90 minutes. Après 180 minutes, le composé était presque complètement dégradé (Studzinski et Gackowska, 2017). Sa réaction en présence d'hypochlorite de sodium conduit à la formation d'une série d'analogues chlorés produits de clivage de pont C = C, notamment le chloroacétate de 2-éthylhexyle, le 1-chloro-4-méthoxybenzène, le 1,3-dichloro-2-méthoxybenzène et le 3-chloro-4-méthoxybenzaldéhyde (Gackowska et collab., 2016; Studzinski et Gackowska, 2017). Les produits de transformation identifiés suggèrent que la dégradation de l'EHMC se déroule en plusieurs étapes, débutant par une chloration, suivie d'une oxydation et d'une décarboxylation. La formation de 1,3-dichloro-2-méthoxybenzène peut par exemple être expliquée par l'oxydation des groupes formyles, suivie de leur décarboxylation.

Malgré des similitudes structurelles entre l'EHMC et l'IMC, la réactivité des deux composés en solution aqueuse en présence de chlore actif est très distincte, l'IMC étant environ 90 fois plus réactive que l'EHMC. En effet, à une concentration initiale d'IMC de 0,5 mg/l, une concentration de NaOCI de 5 mg/l et un pH neutre (pH = $6,79 \pm 0,03$), l'IMC se dégrade rapidement, affichant une demi-vie de $23,8 \pm 0,6$ secondes (Santos et da Silva, 2017). Sa transformation, qui se produit par substitution électrophile du chlore dans les positions ortho du groupe fonctionnel méthoxy dans le cycle benzénique, n'engendre que la forme dichlorée du composé parental comme sous-produits. Le pH influence la vitesse de désintégration du composé, tout comme la présence de MOD. La température joue également un rôle décisif dans la vitesse de réaction, une diminution des taux de dégradation étant observée à mesure que la température augmente.

Il existe plusieurs études portant sur la chloration du BMDM (Santos et collab., 2013; Kalister et collab., 2016, Crista et collab., 2015). La chloration commence exclusivement par l'addition électrophile à la double liaison de la forme énol de la molécule (Lebedev et collab., 2020). Cela engendre la formation de deux sous-produits primaires avec l'hypochlorite de sodium : le chloro-avobenzone (2-chloro-1-(4-tert-butylphényl)-3-(4-méthoxyphényl)-1,3-propanedione) et le dichloro-avobenzone (2,2-dichloro-1-(4-tertbutylphényl)-3-(4-méthoxyphényl)-1,3-propanedione). Du 2-chloro-1-(4-méthoxyphényl) éthanone peut également être formé. Des concentrations plus élevées de chlore entraînent une augmentation de la dégradation de ce composé, alors que la présence de MOD l'inhibe (Crista et collab., 2015). Des pH acides favorisent également la dégradation du BMDM (Wang et collab., 2017). Le schéma de transformation est sensiblement le même lors de l'ajout d'ions bromures (Lebedev et collab., 2020). Un total de 33 produits

de transformation est alors généré, dont des produits bromés, des aldéhydes, des acétophénones, des acides benzoïques, des phénols et du benzaldéhyde. Du bromoforme peut également être formé.

3.8. Élimination des filtres UV dans les stations de traitement des eaux usées municipales

D'après les informations disponibles, selon la technologie mise en œuvre, certaines stations de traitement des eaux usées sont en mesure d'éliminer une partie des filtres UV retrouvés dans les eaux usées. Ce pourcentage varie de 48 % à 99 % pour la BP-1, de 28 % à 96 % pour la BP-3, de 71 % à 81 % pour l'Et-PABA, de 18 % à 82 % pour le 4-MBC, de 40 % à plus de 99 % pour l'EHMC et de 36 % à plus de 99 % pour l'OC (Balmer et collab., 2005; Molins-Delgado, Távora et collab., 2017; Plagellat et collab., 2006; Li, Ma et collab., 2007; Ramos et collab., 2016).

Les différences entre les taux d'élimination peuvent entre autres s'expliquer par les propriétés physicochimiques de chaque composé (Molins-Delgado, Távora et collab., 2017). Parmi les familles de filtres UV, les dérivés de la benzophénone sont généralement les plus efficacement éliminés pendant le traitement, car ils sont davantage hydrophiles, en raison de leurs valeurs de log K_{oe} (BP : 3,18; BP-1 : 2,96 et BP-3 : 3,79) relativement faibles par rapport à celles des autres filtres UV. L'EHMC, l'OD-PABA et l'EHS, avec un log K_{oe} > 5, ont plutôt tendance à s'adsorber sur les particules en raison de la chaîne latérale plus complexe attachée à leur fraction aromatique (Ekpeghere et collab., 2016).

Les différences entre les taux d'élimination peuvent également s'expliquer par les conditions opérationnelles et les procédés de traitements appliqués. Le traitement primaire utilisé dans les stations de traitement des eaux usées vise, par traitement mécanique ou physicochimique, à éliminer au moins la moitié des matières en suspension et au moins 20 % de la demande biochimique en oxygène (DBO) par des procédés tels que la décantation/sédimentation/clarification, la flottation et la coagulation. Généralement, ce type de traitement n'est pas assez efficace pour éliminer les filtres UV des eaux usées. Ainsi, selon l'étude de Langford et ses collaborateurs (2015), une station de traitement des eaux usées qui n'utilise qu'un traitement primaire rejetait de 7 à 13 fois plus de filtres UV dans l'environnement que les installations qui utilisaient un traitement secondaire (boues activées). L'efficacité de l'élimination des filtres UV était faible (0 %-30 %) à modérée (30,1 %-70 %) après ce type de traitement, à l'exception de l'OD-PABA, qui présentait une élimination de 75 % (Tsui, Leung et collab., 2014a, 2014b). Lors de l'ajout d'un traitement secondaire, les concentrations en filtres UV peuvent diminuer de manière significative, avec des taux d'élimination jusqu'à 98 %, selon la substance considérée (Rodil et collab., 2009a, Liu, Ying et collab., 2012a). Cette élimination peut être attribuée à la sorption sur les boues et à la biodégradation par les microorganismes. Ce résultat est corroboré par l'étude de Tsui et ses collaborateurs (2014a), dans laquelle l'élimination de douze filtres UV par cinq stations d'épuration des eaux usées, situées à Hong Kong, équipées de différents modes de traitements, était plus élevée après le traitement secondaire (> 55 %) qu'après le traitement primaire (< 20 %). Le procédé d'osmose inverse, utilisé dans l'une de ces usines, s'est avéré efficace pour éliminer les filtres UV des effluents, avec 99 % du BMDM, de l'HS, de l'OD-PABA, de l'EHMC et des dérivés de la benzophénone (BP1, BP-3 et BP-4) ayant été dégradés. Dans d'autres études, l'élimination du 4-MBC, de la BP-3, de l'OC et de l'EHMC variait de 18 % à 99 % dans les stations d'épuration équipées d'un traitement mécanique, biologique, chimique et d'une filtration sur sable (Balmer et collab., 2005), et de 92 % à 99 % dans une station d'épuration équipée d'un traitement classique par boues activées (Kupper et collab., 2006). De plus, comme il a été démontré dans les sections précédentes, les technologies avancées basées sur la dégradation, telles que l'oxydation chimique, la chloration ou l'ozonation, permettent l'élimination partielle ou complète des filtres UV, bien qu'ils puissent entraîner la formation de sous-produits.

4. Concentrations environnementales

Il existe plusieurs études qui ont cherché à déterminer l'occurrence des filtres UV dans différentes matrices environnementales, autant liquides (eau de mer, eau de surface, eau souterraine, eau interstitielle, eau de piscine et eau du robinet) que solides (sable, sédiments, boues et matières en suspension). Les concentrations répertoriées dans ces études sont présentées aux tableaux 11 à 18 et sont résumées dans les sections suivantes. Notons que la grande majorité des informations colligées proviennent de l'Europe, notamment de l'Espagne et de la Suisse. Aucune donnée n'a été répertoriée au Canada.

4.1. Eau de surface, eau de mer, eau interstitielle et glace

Des concentrations élevées de filtres UV ont été mesurées dans les eaux de surface, atteignant des teneurs de l'ordre du milligramme par litre (mg/l) pour certaines familles, telles que les dérivés de la benzophénone et l'octocrylène (tableau 11). Des concentrations de l'ordre du nanogramme (ng) au microgramme par litre (µg/l) ont également été détectées pour les autres familles, notamment les dérivés du cinnamate et du salicylate :

- Kasprzyk-Hordern et ses collaborateurs (2008a, 2008b, 2009) ont étudié la présence de quatre filtres UV de la famille des dérivés de la benzophénone (BP-1, BP-2, BP-3 et BP-4) dans l'eau de deux rivières au Royaume-Uni. Parmi les composés étudiés, la BP-4 a été retrouvée à des concentrations plus élevées (32-371 µg/l), suivie de la BP-3 (≤ 15-44 µg/l), de la BP-2 (≤ 0,5-285 µg/l) et de la BP-1 (≤ 0,3-17 µg/l). En Espagne, Gago-Ferrero, Mastroianni et leurs collaborateurs (2013) ont mesuré les teneurs de différents filtres UV dans les eaux de surface du fleuve Llobregat. Sur les neuf étudiés, quatre (BP-1, BP-3, BP-4 et 4-MBC) ont été détectés, la BP-4 ayant les concentrations les plus élevées (30,4-862 ng/l). La présence plus importante de la BP-4 dans les eaux de surface pourrait s'expliquer par sa polarité et sa solubilité élevée par rapport aux autres benzophénones.
- Les dérivés du salicylate, notamment l'EHS et l'HS, ont été fréquemment détectés en fortes concentrations dans les eaux de surface. Román et ses collaborateurs (2011) ont mesuré des concentrations jusqu'à 586 ng/l d'EHS et 625 ng/l d'HS dans des échantillons d'eaux de mer provenant de plages, en Espagne. Toujours en Espagne, Vila et ses collaborateurs (2016) ont mesuré des concentrations d'EHS cent fois plus élevées (89 000 ng/l) dans des échantillons d'eau de surface.
- Une concentration de 0,17 mg/l d'OC a été mesurée dans les eaux de mer prélevées en Espagne (Vila et collab., 2016). La même équipe a rapporté des teneurs jusqu'à 0,323 mg/l dans les eaux de surface situées à proximité (Vila et collab., 2017, 2016). Ces teneurs sont supérieures aux autres mesures répertoriées dans la littérature consultée, celles dans l'eau de mer variant de 0,1 à 6 812 ng/l et de ≤ 0,3 à 4 319 ng/l dans l'eau de surface.
- Les dérivés du cinnamate EHMC et IMC ont également été retrouvés à des concentrations élevées dans les eaux de surface. Les teneurs variaient entre ≤ 0,1 et 7 552 ng/l pour l'EHMC et entre ≤ 0,069 et 280 ng/l pour l'IMC.

Les concentrations de filtres UV mesurées dans l'eau de surface varient en fonction de l'emplacement où le suivi a été réalisé. Tsui et ses collaborateurs (2014b) ont déterminé l'occurrence de douze filtres UV dans des échantillons d'eau de surface prélevés dans différentes régions du monde, dont la Chine (Hong Kong, Shantou et Chaozhou), les États-Unis (New York et Los Angeles), le Japon (Tokyo), la Thaïlande (Bangkok) et l'Arctique. L'OC est le composé que l'on trouve en concentrations plus élevées à Hong Kong, la teneur atteignant 6 812 ng/l. La BP-4 présentait la concentration la plus élevée à Tokyo (136 ng/l) et à New York (574 ng/l), tandis que la BP-3 était retrouvée en concentration supérieure à Los Angeles et à Shantou (601 et 188 ng/l, respectivement). L'EHS a été détecté à des concentrations plus élevées (128 ng/l) à Chaozhou, alors qu'il s'agit du BMDM dans l'Arctique (70 ng/l). Cette étude est la première à

rapporter la présence de filtres UV dans l'Arctique, que les auteurs attribuent au transport océanique par les courants marins et au transport atmosphérique.

Les teneurs en filtres UV dans les échantillons d'eau de mer et d'eau de surface dépendent de nombreux facteurs, notamment du taux de fréquentation des plages, du nombre d'utilisateurs de crèmes solaires et de cosmétiques, mais aussi de la marée, du taux de renouvellement d'eau et de la date de prélèvement. Giokas et ses collaborateurs (2005) ont montré que les concentrations de filtres UV dans l'eau augmentent entre midi et 15 h, soit la période où il y a le plus fort achalandage sur les plages, que le rayonnement solaire est maximal et que l'application de crème solaire devrait être à son plus haut niveau. Sankoda et ses collaborateurs (2015) ont également montré des changements diurnes dans les concentrations d'EHMC, qui étaient corrélés au nombre de baigneurs. La concentration maximale en ce composé a été mesurée en après-midi; alors qu'elle diminuait pendant la nuit, bien qu'il n'y ait pas eu d'atténuation complète pendant cette période. Les teneurs varient également en fonction des saisons, les concentrations étant plus faibles en hiver et plus élevées en été. Par exemple, Langford et Thomas (2008) ont montré que la plage de concentration de la BP-3 dans l'eau de mer était de < 5 à 165,5 ng/l en été et de < 5 à 19,5 ng/l le reste de l'année. Le 4-MBC a été détecté à des concentrations supérieures à celles de la BP-3 en été (≤ 5-262,1 ng/l), mais inférieures en hiver (≤ 2-2,6 ng/l). Il en est de même de l'EHMC, dont les teneurs variaient de 38,6 à 189,3 ng/l en été et de ≤ 5 à 32,6 ng/l en hiver. Quoiqu'à des concentrations plus faibles, la détection de certains filtres UV en conditions hivernales laisse présager une certaine persistance dans l'environnement aquatique, en plus de montrer des apports à longueur d'année. Enfin, indépendamment de la saison, les concentrations en filtres UV dans l'eau de surface et l'eau de mer diminuent avec la distance par rapport au rivage, les teneurs mesurées étant les plus élevées juste au-delà de la zone où se trouvent la majorité des nageurs (Bargar et collab., 2015).

4.2. Sédiment, sable et matière en suspension

En raison de leur lipophilie élevée (log $K_{oe} = 3 - 8$) et de leur potentiel de sorption sur la matière organique, les filtres UV peuvent fortement s'adsorber sur les sédiments (Amine et collab., 2012, Mizukawa et collab., 2017). La plupart des filtres UV lipophiles sont répartis principalement entre les particules en suspension et les sédiments, alors que les écrans solaires polaires se retrouvent dans la colonne d'eau, même s'ils peuvent également être adsorbés sur les phases solides si leur pKa (constance d'acidité) est supérieur au pH de l'eau (Molins-Delgado, Távora et collab., 2017).

Parmi les filtres UV mesurés dans ces compartiments, l'OC présentait la fréquence de détection et les concentrations les plus élevées, celles qui ont été répertoriées variant entre 0,04 et 2 400 ng/g dans les sédiments et les sables (tableau 12). Ce composé présente une faible solubilité dans l'eau (0,0038 mg/l), est hautement lipophile avec un log K_{oe} de 6,88, en plus d'être très stable et résistant à la dégradation par la lumière solaire, ce qui explique sa tendance à s'adsorber sur la matière organique sédimentaire (Kupper et collab., 2006, Gago-Ferrero et collab., 2011a, He, Hain et collab., 2019). Ces concentrations élevées dans les sédiments peuvent aussi être associées à son utilisation massive dans les produits de soins personnels, en particulier les écrans solaires (Gago-Ferrero et collab., 2011a, Amine et collab., 2012). Toutefois, l'OC n'a pas été détecté dans toutes les études, ce qui est lié au fait que l'utilisation de ce filtre UV varie entre les pays (Barón et collab., 2013, Apel et collab., 2018).

Comme l'OC, le dérivé du cinnamate EHMC (log $K_{oe} = 5,8$) a été fréquemment étudié et détecté dans des sédiments, avec des concentrations variant entre 0,21 et 880 ng/g. Cependant, l'OD-PABA n'a que très peu été observé dans les sédiments, malgré sa présence dans les eaux de surface. Il en est de même de la famille des dérivés de la benzophénone, de par leur polarité et leur solubilité plus élevée.

Une tendance temporelle de la contamination des sédiments a été mise en évidence dans certaines études. Par exemple, Benedé et ses collaborateurs (2018) ont démontré que les teneurs totales accumulées dans les sables recueillis pendant la saison estivale présentent les plus grandes quantités de filtres UV (5,5-16,2 ng/g) parce que ces zones étaient plus surpeuplées, alors que les valeurs les plus faibles ont été observées en hiver (< 0,01-4,7 ng/g). Amine et ses collaborateurs (2012) rapportent également que des concentrations plus élevées de filtres UV peuvent être retrouvées dans des conditions de faible débit

comme celles de la saison sèche, où se produit simultanément une augmentation de la consommation des filtres UV.

4.3. Affluents et effluents municipaux

De nombreuses études menées dans le monde entier ont confirmé les rejets dans le milieu aquatique de plusieurs filtres UV, par des activités municipales ou industrielles (tableau 13). De façon générale, les niveaux retrouvés dans les eaux usées des affluents sont supérieurs aux niveaux correspondants observés dans les effluents, ce qui indique une élimination de ces composés dans les usines de traitement des eaux usées, le plus souvent par adsorption ou biodégradation.

Parmi les filtres UV les plus retrouvés dans ces matrices se trouvent les dérivés de la benzophénone. Par exemple, les concentrations mesurées en BP-3 varient de $\leq 0,014$ à 3 975 000 ng/l dans les affluents et de $\leq 0,2$ à 2 196 000 ng/l dans les effluents. Pour la BP-4, les teneurs à l'affluent atteignent 13 248 000 ng/l et 6 325 000 ng/l à l'effluent. Dans le cas de la BP-1, des concentrations jusqu'à 700 000 et 41 000 ng/l ont été mesurées à l'affluent et à l'effluent, respectivement (Kasprzyk-Hordern et collab., 2009, 2008a, 2008b). Cela peut s'expliquer par la grande solubilité de ces composés dans l'eau et par le fait que la BP-3 est utilisée non seulement dans les écrans solaires et les cosmétiques, mais aussi dans les plastiques comme stabilisants de lumière (Cunha et collab., 2015a).

4.4. Boue

En raison de la lipophilie élevée (log K_{oe} = 3 – 8), de la grande insolubilité dans l'eau et de la stabilité relative contre la biodégradation des filtres UV, leur élimination dans les usines de traitement des eaux usées est liée principalement à leur sorption sur les boues d'épuration (Ramos et collab., 2015). Les plages de concentrations mesurées pour les composés les plus présents, telles qu'elles sont rapportées dans le tableau 14, sont les suivantes : 4-MBC, 73-4 980 ng/g; OC, 0,27-41,6 µg/g; EHMC, \leq 0,019-14,45 µg/g; et OT, \leq 0,93-27,7 µg/g. Ainsi, les composés les plus lipophiles étaient retrouvés dans les boues en plus grande quantité, à l'exception de l'OD-PABA, qui n'a été détecté que dans deux échantillons. Cela peut être attribué aux processus de dégradation de l'OD-PABA dans les égouts et pendant le traitement des eaux usées, ainsi qu'à une diminution de l'utilisation de ce composé. En effet, l'OD-PABA est un composé dérivé de l'acide p-aminobenzoïque (PABA), qui présente un potentiel photoallergique pour les humains (Waters et collab., 2009). Pour cette raison, le PABA et ses sous-produits ont été progressivement exclus des formulations de filtres solaires, bien que l'OD-PABA soit toujours inclus comme filtre UV. Les composés les plus polaires, lorsqu'ils ont été détectés, ont été retrouvés à de faibles concentrations, comme c'est le cas de la BP-3 et de la BP-4.

4.5. Sol

À notre connaissance, la présence de filtres UV dans les sols a été très peu étudiée jusqu'à maintenant. Seules deux études ont mesuré les teneurs de ces substances dans cette matrice (Jeon et collab., 2006, Sánchez-Brunete et collab., 2011). Pour toutes les substances étudiées, les concentrations étaient relativement faibles, soit de l'ordre de quelques ng/g (tableau 15).

4.6. Eau souterraine

Un faible nombre d'études ont cherché à quantifier les teneurs en filtres UV dans les eaux souterraines (Wick et collab., 2010; Liu, Ying et collab., 2011b; Ho et Ding, 2012; Gago-Ferrero, Mastroianni et collab., 2013, Jurado et collab., 2014; Pintado-Herrera et collab., 2014; Serra-Roig et collab., 2016; Oenning et collab., 2017). De façon générale, ces substances n'étaient pas détectées ou mesurées à de faibles concentrations (tableau 16). Ainsi, parmi les filtres UV retrouvés en concentrations plus importantes dans les eaux souterraines, se retrouvent la BP-3 ($\leq 0,3-63$ ng/l), la BP-4 ($\leq 0,3-36,6$ ng/l) et le 4-MBC ($\leq 0,14-73,1$). La présence de la BP-4 dans cette matrice peut s'expliquer par sa solubilité élevée, celle-ci

étant de 2,5E+05 mg/l dans l'eau (Gago-Ferrero, Mastroianni et collab., 2013). La présence des deux autres composés peut s'expliquer par leur plus forte utilisation dans les produits de soins corporels.

4.7. Eau de piscine

Les piscines extérieures peuvent être une source importante de filtres UV dans l'environnement, en raison de l'utilisation courante des écrans solaires par les gens qui les fréquentent. Par contre, la détection des filtres UV est différente dans cette matrice en raison des processus de dégradation qui peuvent s'y passer. La désinfection par chloration est l'une des techniques les plus utilisées dans le traitement de l'eau des piscines, en raison de sa forte capacité d'oxydation, de son coût moindre par rapport aux autres techniques et de son efficacité. Or, le chlore libre disponible peut réagir avec certains contaminants chimiques retrouvés dans l'eau pour éventuellement créer des sous-produits, pouvant potentiellement être plus toxiques que la molécule mère (Liu et collab., 2014).

Ye et ses collaborateurs (2011) ont analysé quatre dérivés de la benzophénone dans un échantillon d'eau de piscine provenant de Chine. Les concentrations en BP-3, en BP-1, en 4HBP et en BP atteignaient respectivement 4 500, 8 700, 15 400 et 18 800 ng/l. Des teneurs élevées en PBSA (24-13 000 ng/l) et, dans une moindre mesure, en BP-3 (26-620 ng/l) et en BP-4 (3,3-35 ng/l) ont été mesurées dans des piscines de la République tchèque (Grabicova et collab., 2013). Ces concentrations élevées en PBSA s'expliquent par son utilisation massive comme filtre UV dans les produits cosmétiques (concentration maximale de 8 % en Europe et de 4 % aux États-Unis). D'autre part, le PBSA est très soluble dans l'eau et le chlore joue un rôle négligeable dans sa dégradation (Ji et collab., 2013b). D'autres composés, comme les dérivés du cinnamate (EHMC : 3-7 700 ng/l et IMC : 10-26 000 ng/l), les dérivés du salicylate (HS : \leq 2,1-58 000 ng/l et EHS : \leq 0,5-141 000 ng/l) et l'OC (15-3 804 000 ng/l) ont été retrouvés à des concentrations élevées dans les eaux de piscine (Suárez et collab., 2016, Vila et collab., 2017, 2016).

Des composés tels que la BP-8, le BMDM, l'OD-PABA et le MA n'ont pas été détectés ou l'ont été à de faibles concentrations, ce qui pourrait être dû aux processus de dégradation qu'ils subissent au contact du chlore.

Toutes les données collectées dans la littérature rapportant des teneurs en filtres UV dans les eaux de piscine sont présentées dans le tableau 17.

4.8. Eau du robinet

De façon générale, les filtres UV ont été peu quantifiés dans l'eau potable (tableau 18). Néanmoins, des concentrations jusqu'à 295 ng/ de BP-3, 160 ng/l d'EHS et 256 ng/l d'EHMC ont été mesurées dans l'eau prélevée au robinet en Espagne (Román et collab., 2011, Díaz-Cruz et collab., 2012). Des concentrations de 450 ng/l d'EHMC et de 260 ng/l de BP ont également été mesurées dans de l'eau prélevée au robinet en Californie (Stackelberg et collab., 2004, Loraine et Pettigrove, 2006).

5. Bioaccumulation dans les organismes

Une revue des facteurs de bioconcentration (FBC) disponibles dans la littérature montre que certains filtres UV ont des FBC supérieurs à 5 000 chez les poissons, ce qui laisse présager qu'ils présentent un potentiel de bioaccumulation élevé dans ces organismes (tableau 19).

De façon théorique, les dérivés de la benzophénone présentent un faible potentiel de bioaccumulation en raison de leurs propriétés physiques et chimiques, c'est-à-dire un poids moléculaire élevé et un faible coefficient de partage octanol-eau (log K_{oe}). Des FBC estimés entre 3,2 et 209,5 suggèrent que le potentiel de bioconcentration des composés de cette famille dans les organismes aquatiques est faible (tableau 19). Seul le diéthylamino hydroxybenzoyl hexyl benzoate (DHHB) présente un FBC estimé plus élevé que celui de ses congénères, avec une valeur de 3 151. Par conséquent, ces substances ne répondent pas aux critères de bioaccumulation énoncés dans le *Règlement sur la persistance et la bioaccumulation* de la *Loi canadienne sur la protection de l'environnement* (1999), les valeurs du FBC et du facteur de bioaccumulation (FBA) corrigées en fonction du métabolisme étant inférieures à 5 000, selon le taux métabolique. Il en est de même du PABA et de l'Et-PABA, du 3-BC, du benzyl-salicylate, du 4-IMC, de l'étocrylène, du PBSA et du BMDM.

L'EHS, le 4-MBC et le menthyl anthranilate (MA) présentent des FBC supérieurs à 5 000, ce qui indique que leur potentiel de bioconcentration dans les organismes aquatiques est élevé. D'après ces informations, ces filtres UV pourraient se bioaccumuler dans les organismes aquatiques et présenter un risque de bioamplification dans les chaînes alimentaires.

L'EHMC présente un FBC théorique de 5 856, en lien avec un log K_{oe} supérieur à 6, ce qui suggère un potentiel de bioaccumulation élevé dans les organismes aquatiques. Toutefois, un FBC de 433 l/kg a été établi dans une étude menée en laboratoire chez la truite arc-en-ciel (*Oncorhynchus mykiss*) exposée pendant cinq jours selon la ligne directrice 305 de l'Organisation de coopération et de développement économiques (OCDE). Des FBC variant entre 167 et 1 500 ont également été mesurés chez des barbeaux communs (*Barbus barbus*) et des chevesnes (*Leuciscus cephalus*) récoltés en Suisse (Fent, Zenker et collab., 2010). Ces données expérimentales suggèrent donc un potentiel de bioaccumulation plus faible dans les organismes exposés. De telles observations ont également été rapportées pour l'HS et l'OC. Les résultats des quelques études expérimentales disponibles pour ces substances ne sont donc pas en accord avec les FBC estimés. Par conséquent, il semble que d'autres études sur la bioaccumulation de ces filtres UV dans les organismes aquatiques sont nécessaires pour évaluer le danger associé à ces substances, notamment aux concentrations retrouvées dans le milieu, pour les organismes aquatiques vivant dans la colonne d'eau et ceux vivant sur ou dans les sédiments.

Deux études expérimentales ont évalué la cinétique d'accumulation des filtres UV chez les organismes aquatiques. Gomez et ses collaborateurs (2011) ont étudié la cinétique d'absorption de l'EHMC et de l'OC chez la moule méditerranéenne Mytilus galloprovincialis. Les moules étaient nourries à t = 0 et t = 24h avec des algues contaminées à une concentration nominale de 10 µg/l. Dès le début de l'exposition, l'absorption des deux filtres UV était rapide, suivie d'une élimination progressive en 24 heures. L'accumulation en EHMC avait atteint 138 ng/g en 1 heure, avant de diminuer à 25 ng/g après 24 heures. Dans le cas de l'OC, la teneur accumulée dans les moules était de 839 ng/g après 1 heure et avait diminué à 33 ng/g après 24 heures. La même tendance a été observée après la seconde ingestion d'algues contaminées, bien que les teneurs étaient légèrement supérieures. Ainsi, 48 heures après le début de l'expérimentation, les teneurs accumulées en EHMC et en OC étaient respectivement de 38 et de 60 ng/g. L'accumulation supérieure d'OC pourrait s'expliquer par son Koe supérieur. Vidal-Liñán et ses collaborateurs (2018) ont également évalué la cinétique d'accumulation de différents filtres UV organiques (4-MBC, BP-3, BP-4, OC et OD-PABA) chez des moules méditerranéennes exposées pendant 30 jours à des concentrations de 1 µg/l, suivies d'une période de dépuration de 20 jours. L'absorption du 4-MBC, de la BP-4 et de l'OC était très rapide, les concentrations accumulées étant de 418, 263 et 327 ng/g après 24 heures d'exposition (tableau 20). La BP-3 et l'OD-PABA ont montré une accumulation plus faible, avec des accumulations de 80 et 30 ng/g, respectivement. Les concentrations de la BP-3 sont demeurées semblables tout au long de

la période d'exposition, alors que les moules semblaient capables de transformer l'OD-PABA, les niveaux de ce filtre UV étant inférieurs à la limite de quantification à la fin de la période d'exposition.

De nombreuses études ont cherché à déterminer la bioaccumulation des filtres UV dans des organismes aquatiques prélevés en milieu naturel. Quelques exemples sont présentés ci-dessous. Les données répertoriées dans la littérature sont colligées dans le tableau 21.

De façon générale, l'accumulation des filtres UV dans les études réalisées sur le terrain est supérieure pour les composés ayant des K_{oe} plus élevés. C'est notamment le cas de l'EHMC et de l'OC. Dans les écosystèmes d'eau douce, les teneurs en OC dans des poissons capturés en aval d'une station de traitement des eaux usées atteignaient 600 ng/g (Buser et collab., 2006). L'EHMC a été mesuré chez des crustacés (*Gammarus* sp.), des mollusques (*Dreissena polymorpha*) et chez plusieurs espèces de poissons à des niveaux atteignant 133, 150 et 337 ng/g, respectivement (Fent, Zenker et collab., 2010). Dans les écosystèmes marins, la présence d'EHMC et d'OC a été rapportée dans des moules prélevées dans les zones côtières où les activités balnéaires prédominent (Bachelot et collab., 2012, Picot Groz et collab., 2014). Les concentrations atteignaient 3 992 ng/g d'EHMC et 7 112 ng/g d'OC.

Certains composés n'ont pas ou peu été détectés dans le biote, contrairement aux échantillons d'eau, où ceux-ci ont été mesurés. C'est notamment le cas de l'OD-PABA, des dérivés de la benzophénone (p. ex. : BP, BP-1, BP-2 et BP-4) et de leurs métabolites (p. ex. : THB, 4HBP). Cela est probablement lié au fait que ces substances spécifiques ne sont pas suffisamment lipophiles pour s'accumuler dans le biote. Elles pourraient aussi être métabolisées et éliminées par les organismes aquatiques.

Quelques études ont mesuré les concentrations accumulées dans différents organes des poissons. Ma et ses collaborateurs (2017a) ont mesuré l'accumulation de deux filtres UV chez le poisson rouge (*Carassius auratus*), après une exposition en laboratoire à différentes concentrations de BMDM (3,88 à 337,15 µg/l) et d'OD-PABA (4,66 à 459,32 µg/l), pendant 28 jours. Dans le cas du BMDM, la bioconcentration dans les différents tissus était équivalente lorsque les poissons étaient exposés aux plus faibles concentrations (≤ 35,61 µg/l). Aux concentrations d'exposition supérieures (≥ 181,85 µg/l), le cerveau, les reins et le foie avaient accumulé des teneurs en BMDM plus importantes que les muscles et les branchies. Dans le cas de l'OD-PABA, l'accumulation était plus importante aux concentrations d'exposition plus faibles, ce qui suggère la mise en place d'un processus de métabolisation et de détoxification chez les poissons exposés. Pour les deux filtres UV, les concentrations maximales ont été détectées dans le foie, puis dans le cerveau, les reins, les branchies et les muscles. L'accumulation dans le foie et le rein, organes de détoxification, a pu limiter la distribution des contaminants dans tout l'organisme. De plus, les concentrations supérieures dans le foie, le cerveau et les reins peuvent s'expliquer par le fait que la teneur en lipides dans ces organes est plus élevée que dans les muscles et les branchies, ce qui facilite l'accumulation de ces filtres UV hautement lipophiles dans ces organes.

Ziarrusta et ses collaborateurs (2018a) rapportent que les accumulations les plus importantes chez la daurade royale (*Sparus aurata*), exposée en laboratoire à une concentration de 0,05 mg/l de BP-3, pendant 14 jours, étaient retrouvées dans la bile (17 mg/l), le plasma (0,129 mg/l), les muscles (600 ± 117 ng/g), les branchies (150 ± 30 ng/g) et le foie (140 ± 30 ng/g). Les concentrations retrouvées dans le foie étaient moindres que celles qui sont habituellement retrouvées pour une matrice lipidique, ce qui pourrait s'expliquer par une forte métabolisation de la BP-3. Notons toutefois que cette étude a été réalisée avec des concentrations très élevées de BP-3, peu représentatives des conditions environnementales.

Les concentrations mesurées par Molins-Delgado et ses collaborateurs (2018) en milieu naturel montrent une accumulation de filtres UV plus importante dans le foie du mulet lebranche (*Mugil liza*), prélevé dans la baie de Guanabara, au Brésil (4,6-451 ng/g), que dans les muscles et les branchies (2,4-100 ng/g). Les concentrations moyennes dans le foie étaient onze fois plus élevées que celles qui ont été mesurées dans les muscles et cinq fois plus élevées que dans les branchies, ce qui peut s'expliquer par la fonction du foie en tant qu'organe détoxifiant dans les organismes. La présence plus importante de métabolites, tels que la BP-1, le 4-HB et le 4-DHB, dans le foie a été rapportée (Gago-Ferrero et collab., 2015). Les teneurs mesurées dans les tissus hépatiques du mulet étaient entre 35 et 130 fois moins élevées que celles qui ont été retrouvées dans le foie de morues de l'Atlantique (*Gadus morhua*) de l'Oslofjord, en Norvège. L'accumulation dans les tissus est influencée par différents facteurs, notamment la teneur en MOD retrouvée dans le milieu. En effet, Ma et ses collaborateurs (2018) ont évalué la prise en charge de l'OD-PABA en présence de concentrations croissantes de MOD (0, 1, 10 et 20 mg/l) chez le poisson rouge (*Carassius auratus*), exposé en laboratoire, pendant sept jours. Avec l'augmentation des concentrations de MOD dans l'eau, les FBC diminuaient de 28% à 51 % dans les muscles, de 73 % à 97 % dans les branchies, de 38 % à 88 % dans le foie et de 10 % à 79 % dans les reins. La biodisponibilité de l'OD-PABA était réduite par la présence de MOD. Par ailleurs, ces auteurs ont également montré que l'ingestion d'aliments contaminés entraînait une baisse des concentrations d'OD-PABA dans les tissus des organismes exposés, proportionnelle aux ratios d'alimentation testés (0 %, 0,5 %, 1 % et 2 % de poids corporel). Les FBC ont diminué de 40 % à 73 % dans les muscles, de 57 % à 80 % dans les branchies, de 66 % à 88 % dans le foie et de 76 % à 89 % dans le rein. Ces résultats indiquent que l'alimentation diminue la biodisponibilité de l'OD-PABA dans les poissons, les protégeant ainsi contre la bioconcentration de ce filtre UV.

Gago-Ferrero et ses collaborateurs (2015) ont comparé les teneurs accumulées dans les sédiments prélevés dans le fleuve Guadalquivir, en Espagne, à celles qui étaient accumulées dans des poissons prélevés dans le même secteur. Les teneurs en BP-3, en OC et en EHMC ont été utilisées pour calculer les facteurs d'accumulation entre les sédiments et le biote (FASB). Les niveaux détectés dans différentes espèces de poissons étaient significativement plus élevés que ceux des sédiments correspondants, laissant sous-entendre une possible accumulation de ces composés lipophiles dans les organismes exposés. Cependant, après normalisation des concentrations avec les teneurs en lipides, les FASB calculés varient de 0,04 à 0,3, ce qui indique un faible potentiel transfert de ces composés des sédiments aux poissons.

Les études réalisées ont démontré une variation saisonnière des teneurs accumulées dans les organismes. Castro et ses collaborateurs (2018) rapportent, chez des moules méditerranéennes et communes (*M. galloprovincialis* et *M. edulis*), prélevées tout au long de l'année au Portugal, des concentrations totales moyennes plus élevées en octobre (484,5 ng/g). Ces résultats sont conformes à ceux qui ont été obtenus par Fent, Zenker et leurs collaborateurs (2010), qui ont constaté que les filtres UV accumulés dans différents organismes vivant dans un lac utilisé pour la baignade, en Suisse, présentaient des concentrations plus élevées après la saison estivale. Picot Groz et ses collaborateurs (2014), ainsi que Bachelot et ses collaborateurs (2012) ont également observé une tendance saisonnière dans des moules méditerranéennes prélevées respectivement dans les eaux portugaises et françaises, mais les collaborateurs (2012) ont démontré que les accumulations en filtres UV étaient corrélées avec la température de l'air et non avec la taille de la population, soulignant ainsi l'influence des activités récréatives sur la contamination côtière. Les concentrations mesurées dans les organismes varient en fonction des saisons, donc de l'utilisation de crèmes solaires.

Les données récoltées dans la littérature laissent présager que certains filtres UV, notamment l'EHMC, peuvent se bioamplifier le long de la chaîne alimentaire. Fent, Zenker et leurs collaborateurs (2010) rapportent des concentrations plus élevées (supérieures à 700 ng/g) dans les muscles du cormoran (*Phalacrocorax* sp.), un oiseau piscivore, comparativement à leurs proies (accumulations jusqu'à 337 ng/g chez les poissons). Ces auteurs suggèrent une bioamplification entre le prédateur et ses proies (barbeau, chevesne et truite commune), mais également chez les poissons omnivores s'alimentant de gammares. Une telle bioamplification a également été observée par Gago-Ferrero, Díaz-Cruz et leurs collaborateurs (2015, 2013), qui ont mesuré des concentrations plus élevées en filtres UV dans les poissons de niveaux trophiques supérieurs.

La bioamplification sur l'ensemble de réseaux trophiques aquatiques a également été évaluée en considérant les facteurs d'amplification par voie trophique (TMF). Dans cette approche, le logarithme de la concentration du contaminant est tracé en fonction du niveau trophique, et le TMF est déterminé à partir de la pente (a) de la régression (TMF = 10^a). Un TMF significativement supérieur à 1 (a > 0) traduit un caractère bioamplifiable. Yang et ses collaborateurs (2020) ont évalué la bioamplification de quatre filtres UV organiques (HS, BP-3, EHMC et OC) dans un réseau trophique fluvial incluant du zooplancton, des invertébrés et plusieurs espèces de poissons. Les TMF de tous les filtres UV considérés étaient supérieurs

à l'unité. La valeur maximale a été observée chez l'OC (TMF = 2,04), confirmant le caractère bioamplifiable de ce composé.

Un transfert entre la mère et sa progéniture peut également se produire chez les organismes de niveaux trophiques supérieurs. Molins-Delgado, Manez et leurs collaborateurs (2017) ont rapporté un transfert de la mère vers les œufs chez différentes espèces d'oiseaux. Chez les mammifères marins, la comparaison des concentrations totales en filtres UV dans les tissus maternels (graisse : 105 ± 155 ng/g et muscles : $2 175 \pm 3 720$ ng/g) et les tissus fœtaux (graisse : 125 ± 115 ng/g et muscles : $2 490 \pm 4 120$ ng/g) de dauphins de la Plata (*Pontoporia blainvillei*) et de Guyane (*Sotalia guianensis*), des eaux côtières du Brésil, a montré une charge jusqu'à 10 fois plus élevée chez les fœtus que chez leurs mères (Alonso et collab., 2015). Les concentrations supérieures retrouvées dans les fœtus démontrent que ces composés sont efficacement transférés par le placenta. De plus, autant chez la mère que chez sa progéniture, les concentrations retrouvées dans les muscles étaient supérieures à celles qui ont été mesurées dans les graisses, laissant sous-entendre que ces contaminants pourraient avoir une plus grande affinité pour les protéines que pour les lipides

6. Toxicité chez les organismes aquatiques

Cette section décrit la toxicité des filtres UV chez les organismes aquatiques. Les données de toxicité répertoriées sont présentées dans trois sous-sections distinctes, selon leur type d'effet : potentiel toxique, potentiel génotoxique et potentiel de perturbation endocrinienne. Le potentiel toxique inclut notamment les effets sur la survie, la croissance et la cellule (cytotoxicité). Le potentiel génotoxique inclut tous les types de dommages à l'ADN. Enfin, le potentiel de perturbation endocrinienne inclut tous les déséquilibres hormonaux sur la totalité ou une partie seulement des quatre voies hormonales : œstrogénique, androgénique, thyroïdienne et stéroïdogénique. Précisons que, bien que les effets sur la reproduction puissent être des effets indirects associés au potentiel toxique (p. ex., diminution de la prise de nourriture), ceux-ci sont présentés dans la section traitant du potentiel de perturbation endocrinienne puisque les hormones jouent un rôle clé dans la fonction reproductive. Les études portant sur la synergie, l'additivité, la potentialisation ou l'antagonie des substances à l'étude ont également été retenues, bien que l'objectif de ce rapport soit de documenter chaque substance individuellement.

6.1. Potentiel toxique

De nombreuses études ont cherché à définir des concentrations létales ou inhibitrices pour différents organismes aquatiques exposés aux filtres UV. Celles-ci sont résumées dans le tableau 22.

Les études consultées montrent que les filtres UV peuvent compromettre la croissance de différentes espèces d'invertébrés, telles que l'oursin *Paracentrotus lividus* (Paredes et collab., 2014, Torres et collab., 2016). Des effets chroniques sur la croissance ont été rapportés pour l'algue *Desmodesmus subspicatus* (Sieratowicz et collab., 2011), la microalgue marine *Isochrysis galbana* (Paredes et collab., 2014) et le protozoaire *Tetrahymena thermophila* (Gao et collab., 2013). La mobilité des invertébrés peut également être affectée. C'est le cas pour la daphnie *Daphnia magna* (Sieratowicz et collab., 2011; Li, 2012; Liu et collab., 2015a; Molins-Delgado et collab., 2016), le copépode *Gladioferens pectinatus* (Guyon et collab., 2018) et la balane *Balanus amphitrite* (Tsui et collab., 2019).

De façon générale, les effets sont plus marqués chez les organismes de niveaux trophiques inférieurs. Ces organismes semblent notamment plus sensibles aux dérivés de la benzophénone. Des études évaluant la toxicité de la BP-3 chez les algues rapportent des CE_{50} -72 h de 1,85 mg/l chez *Chlamydomonas reinhardtii* (Mao et collab., 2017), de 0,96 mg/l chez *Desmodesmus subspicatus* (Sieratowicz et collab., 2011), de 2,46 mg/l chez *Microcystis aeruginosa* (Mao et collab., 2017), de 0,25 mg/l chez *Skeletonema pseudocostatum* (Petersen, Heiaas et collab., 2014), une CE_{50} -24 h de 0,36 mg/l chez *Scenedesmus vacuolatus* (Rodil et collab., 2009a), ainsi qu'une CE_{50} -96 h de 2,98 mg/l chez *Chlorella vulgaris* (Du et collab., 2017).

En plus des algues, les coraux sont particulièrement vulnérables à la présence de filtres UV dans l'eau de mer, incluant ceux de la famille des dérivés de la benzophénone. La BP-2, tout comme la BP-3, a provoqué la transformation des planules du corail digitiforme Stylophora pistillata d'un état planctonique mobile à un état déformé et sessile, autant à l'obscurité qu'à la lumière (Downs et collab., 2016, 2014). La présence de BP-3 a induit l'ossification de la plantule, enfermant celle-ci dans son propre squelette. L'exposition à la BP-2, en présence de lumière, a induit une nécrose étendue de l'épiderme et du derme gastrique, alors que l'exposition à ce composé dans l'obscurité a induit l'autophagie et la mort cellulaire autophagique. Les planules ont également montré une augmentation du taux de blanchiment, proportionnelle aux concentrations de ces deux filtres UV. En présence de lumière, les CL₅₀ de la BP-2, pour une exposition de 8 et 24 heures, étaient de 120 et 0,165 mg/l, respectivement (Downs et collab., 2014). Dans l'obscurité, celles-ci étaient de 144 et 0,548 mg/l. La CL₅₀ des planules exposées à la BP-3, en présence de lumière, pour une exposition de 8 et 24 heures, était de 3.1 et 0.139 mg/l, respectivement, comparativement à 16,8 et 0,779 mg/l dans l'obscurité (Downs et collab., 2016). Les niveaux de déformation des planules exposées à la BP-3, exprimés par la CE-20-24 h, étaient de 6,5 µg/l en présence de lumière et de 10 µg/l dans l'obscurité. La contamination des récifs coralliens par la BP-3 dans les îles Vierges américaines varie de 75 µg/l à 1,4 mg/l, alors qu'une contamination entre 0,8 et 19,2 µg/l est rapportée dans les îles

hawaïennes. Dans les zones fortement exposées, les concentrations environnementales pourraient donc représenter un danger pour la conservation des récifs coralliens, en plus de menacer leur résilience face aux changements climatiques.

La toxicité des filtres UV est liée à leurs caractéristiques physicochimiques, telles que la lipophilie, exprimée par le log K_{oe}. Les CE₅₀ augmentent généralement avec la lipophilie. C'est le cas de l'EHMC (log K_{oe} = 6,1; CL₅₀-48 h de 0,28 mg/l chez *D. magna*; Fent, Kunz et collab., 2010) et du 4-MBC (K_{oe} = 4,95; CL₅₀-48 h de 0,56 mg/l chez *D. magna*; Fent, Kunz et collab., 2010), qui présentent une toxicité aiguë supérieure à celle des autres filtres UV. Les données disponibles indiquent par ailleurs une sensibilité plus élevée à la 4-MBC chez les espèces marines qui peut être liée à leur teneur en lipides supérieure, comparativement aux espèces d'eau douce, ce qui peut être associé à une assimilation plus élevée des contaminants organiques lipophiles et, par conséquent, à des effets toxiques plus importants.

Plusieurs études portant sur l'impact des filtres UV sur les enzymes antioxydantes des organismes aquatiques sont disponibles dans la littérature. Celles-ci, résumées dans les paragraphes suivants, ont démontré que certains filtres UV organiques, tels que la BP-3, le 4-MBC, l'EHMC et le PBSA, peuvent générer des dérivés réactifs de l'oxygène (DRO). Ces espèces oxydantes peuvent endommager les lipides, les protéines et l'ADN des organismes aquatiques exposés, en lien avec un niveau élevé de stress oxydatif.

Des effets liés au stress oxydatif ont été observés à la suite d'une exposition aux dérivés de la benzophénone chez, notamment, *T. thermophila* (1 µg/l de BP-3, 24 heures; Gao et collab., 2013) ou la cyanobactérie *Microcystis aeruginosa* (0,01-1 000 µg/l de BP-1 et BP-3, sept jours; Mao et collab., 2020). Chez les plantes aquatiques, une réduction des pigments photosynthétiques et des teneurs en caroténoïdes a été observée chez *Chlorella vulgaris* exposé 13 jours à une concentration minimale de 5 mg/l de BP-4 (Huang et collab., 2018). Cette réponse pourrait être due à la peroxydation des lipides présents dans les thylacoïdes des algues, engendrant la dégradation des complexes PSII. Les modifications des pigments photosynthétiques pourraient consister en un mécanisme de protection pour éliminer les DRO accumulés dans les chloroplastes, contribuant ainsi à la survie et à la croissance des algues (Zhong et collab., 2019).

Plusieurs études ont évalué l'apparition d'un stress oxydatif chez les poissons à la suite d'une exposition à des dérivés de la benzophénone :

- Rodríguez-Fuentes et ses collaborateurs (2015) ont dosé plusieurs enzymes, dont la superoxyde dismutase (SOD), la catalase (CAT) et la glutathion peroxydase (GPx), chez des embryons de poissons-zèbres exposés pendant 48 heures à des concentrations jusqu'à 1 mg/l de BP-3. Bien qu'une tendance à la hausse ait été notée, l'exposition n'a engendré aucune différence significative dans les niveaux de CAT, SOD ou GPx dans les conditions testées.
- Chez le poisson rouge *Carassius auratus*, une étude a montré que les activités de la SOD, de la CAT, de la glutathion S-transférase (GST) et du glutathion (GSH) étaient modifiées par une exposition de 28 jours à des concentrations de 0,5 et 5 mg/l de certains dérivés de la benzophénone (BP-1, BP-2, BP-3 et BP-4) (Liu, Sun et collab., 2015b). Après sept jours d'exposition, les niveaux de SOD et de CAT étaient significativement diminués dans tous les groupes exposés, probablement en raison d'une augmentation des quantités de DRO. Après 28 jours d'exposition, l'activité de la SOD était significativement inférieure à celle du groupe témoin à la plus forte concentration de tous les dérivés de la benzophénone, tandis que l'activité de la CAT était significativement diminuée chez les poissons exposés à la BP-2. Ce résultat pourrait indiquer qu'une production excessive de DRO a entraîné l'accumulation des substances oxydantes dans le foie, le système antioxydant n'ayant pas réussi à les éliminer lors de l'exposition prolongée. Les niveaux de GST et de GSH étaient significativement supérieurs à ceux des témoins dans le foie de *C. auratus* exposés à la BP-1 et à la BP-3. Ces réponses au stress oxydatif pourraient expliquer les lésions histopathologiques au niveau du foie observées chez certains poissons exposés.
- En plus d'un stress oxydatif, la BP-3, à fortes concentrations (50 mg/l), est en mesure de perturber le métabolome du foie et du plasma de daurades royales juvéniles (*Sparus aurata*) exposées 14 jours, en altérant différentes voies du métabolisme des lipides (élongation des acides gras,

métabolisme de l'acide a-linolénique, biosynthèse des acides gras insaturés et métabolisme des acides gras), de la phénylalanine et de la tyrosine (Ziarrusta et collab., 2018b). Une accumulation de lipides dans le sac vitellin, qui affecte respectivement le traitement des lipides et l'expression des cellules de la crête neurale crânienne, a également été observée chez les larves de poisson-zèbre, exposées cinq jours à une concentration minimale de 9,85 mg/l de BP-2 (Fong et collab., 2016). Cette modification s'est traduite par des malformations de la tête, des malformations cardiaques et un œdème du vitellus. Dans ces deux études, aucun métabolite n'a été altéré de manière significative dans le cerveau, ce qui suggère que le métabolisme cérébral n'est pas affecté par les dérivés de la benzophénone. La BP-3 peut, néanmoins, induire une neurotoxicité chez les organismes exposés, se traduisant par une altération des comportements moteurs et sociaux chez les larves de poisson-zèbre exposés 24 heures à 10 µg/l de BP-3 (Tao et collab., 2020).

Toutes les études sur les dérivés de la benzophénone montrent des changements dans les activités des enzymes antioxydantes à la suite d'une exposition à long terme, ce qui suggère que les organismes aquatiques pourraient être affectés par une exposition chronique à certains filtres UV, tels que les dérivés de la benzophénone, retrouvés dans l'environnement.

À notre connaissance, une seule étude a évalué le stress oxydatif associé à une exposition au PABA chez des poissons. Celle-ci démontre que des concentrations de 0,5 à 5 mg/l peuvent provoquer des modifications significatives des taux de SOD, de GST et de GSH dans le foie du poisson-zèbre après une exposition de 7 à 14 jours (Huang et collab., 2020). Ces modifications étaient accompagnées d'une induction du malondialdéhyde (MDA) à la suite d'une exposition de 14 jours à 5 mg/l de PABA, ce qui indique la peroxydation des lipides. L'OD-PABA peut également induire un stress oxydatif chez *C. auratus*, une exposition à 459,32 µg/l pendant 28 jours ayant provoqué une augmentation significative des activités de la glutathion réductase (GR) et de la CAT (Ma et collab., 2017a).

Dans le cas d'une exposition aux dérivés du camphre, les résultats suggèrent également que le 4-MBC peut induire du stress oxydatif :

- Il a été démontré que le 4-MBC inhibe la CAT chez *T. thermophile* à une concentration de 1 µgl/l (Gao et collab., 2013) et chez *Chironomus riparius* à des concentrations de 14,13 mg/kg (Campos et collab., 2017a);
- Une activité significativement plus faible de la lactate déshydrogénase (LDH) a été observée chez des larves de sole sénégalaise (*Solea Senegalensis*) exposées pendant 96 heures à des concentrations de 0,025 et 0,051 mg/l (Araújo et collab., 2018);
- La CAT, le LDH et la peroxydation lipidique (LPO) n'ont pas été modifiés de manière significative chez des embryons de grenouilles de Pérez, *Pelophylax perezi*, après 144 heures d'exposition jusqu'à 1,3 mg/l (Martins et collab., 2017);
- Une augmentation de l'activité de la GST chez les poissons-zèbres exposés 96 heures à 0,15 mg/l suggère une activation des processus de détoxication (Quintaneiro et collab., 2019);
- À des concentrations de 1,34 et 10,79 µg/l, l'analyse de l'expression de l'ARNm de différents gènes dans les glandes digestives de la palourde japonaise (*Ruditapes philippinarum*) a signalé une expression accrue des gènes codants pour des enzymes antioxydantes telles que la CAT, des enzymes détoxifiantes comme la GST, et des gènes codants pour des enzymes liées au stress cellulaire telles que la GADD (*Growth arrest and DNA damage-inducible* gène d'arrêt de la croissance et d'induction de dommages à l'ADN), confirmant que le 4-MBC peut provoquer un stress cellulaire dans les organismes exposés (Santonocito et collab., 2020).

Le 4-MBC peut aussi engendrer des dommages neurotoxiques à la suite de l'accumulation du neurotransmetteur acétylcholinestérase (AChE), tels qu'ils ont pu être observés chez différentes espèces de poissons minimalement exposés à 0,085 mg/l (Li, Tsui et collab., 2016, Araújo et collab., 2018, Quintaneiro et collab., 2019). En plus des dommages neuronaux, des anomalies morphologiques ont été observées à la suite d'une exposition à ce composé. Une exposition de 96 heures à partir de 0,77 mg/l a notamment induit la courbure de la notocorde et l'absorption retardée du sac vitellin, en plus de diminuer

la fréquence cardiaque, engendrant des œdèmes péricardiques chez les embryons de poisson-zèbre exposés (Li, Tsui et collab., 2016, Torres et collab., 2016, Quintaneiro et collab., 2019). L'équilibre des larves a également été affecté, ce qui pourrait affecter directement leur performance de nage et indirectement compromettre leur survie face aux prédateurs.

L'expression des protéines de choc thermique (Hsp70) chez des gammares *Gammarus fossarum* mâles et femelles a augmenté significativement après une exposition de 96 heures à de faibles concentrations de 3-BC (Scheil et collab., 2008). La réponse maximale a été observée à une concentration de 3,3 µg/l. Aux concentrations plus élevées, les niveaux de Hsp70 étaient plus faibles. Ce résultat peut s'expliquer par un arrêt de la synthèse de Hsp70 chez les cellules fortement exposées, en raison d'effet sur l'intégrité des cellules. En effet, des dommages cellulaires ont été observés dans les cellules épithéliales de l'hépatopancréas et des appendices intestinaux après un traitement avec 330 ug/l de 3-BC (Scheil et collab., 2008).

Dans le cas de l'OC, deux études ont démontré que ce filtre UV affecte le métabolisme des organismes exposés. Chez les coraux, la majorité des polypes de *Pocillopora damicornis* adultes exposés sept jours à 300 µg/l d'OC ont été retrouvés fermés (Stien et collab., 2019). L'analyse différentielle des profils coralliens a révélé des niveaux plus élevés de 15 acylcarnitines, des esters d'acides gras, suggérant un métabolisme anormal des acides gras à la suite d'un dysfonctionnement mitochondrial. Ce dysfonctionnement s'expliquerait par l'accumulation tissulaire d'analogues de l'OC très lipophiles, résultant d'une transformation de l'OC en conjugués d'acides gras par oxydation de la chaîne éthylhexyle. Chez les poissons, l'analyse transcriptomique de cerveaux et de foies de poissons-zèbres, après une exposition à 383 µg/l d'OC pendant 16 jours, a révélé une altération de 628 et 136 transcrits, respectivement (Bluthgen et collab., 2014). Les données recueillies démontrent que ce composé affecte principalement la transcription des gènes liés aux processus de développement des organes, à l'hématopoïèse, à la formation de vaisseaux sanguins, à la circulation sanguine, à la différenciation des cellules adipeuses et au métabolisme.

L'exposition de poissons-zèbres mâles à l'EHMC, pendant 14 jours, à des concentrations de 2,2 et 890 µg/l, a entraîné l'altération de 1 096 et 1 137 transcrits, respectivement (Zucchi et collab., 2011b). De nombreux processus biologiques semblent ainsi être affectés par ce composé, notamment les voies impliquées dans le remodelage des tissus, la réponse du système immunitaire, la réponse inflammatoire, les dommages à l'ADN et l'apoptose.

Après 42 jours d'exposition à une concentration de 1 mg/l de PBSA, les niveaux de CAT et de SOD dans le foie de truites arc-en-ciel (*Oncorhynchus mykiss*) n'étaient pas significativement différents entre le groupe témoin et le groupe exposé (Grabicova et collab., 2013). Le niveau de la GR était significativement plus faible, ce qui pourrait être causé par les DRO ou les aldéhydes toxiques. Les activités de l'éthoxyrésorufine-O-dééthylase (EROD), du méthoxyrésorufine-O-dééthylase (MROD) et du 7-pentoxyrésorufine-O-déatkylase (PROD) ont augmenté de façon significative après 21 jours d'exposition, mais non après 42 jours. Ces résultats indiquent que le PBSA peut potentiellement induire un stress oxydatif chez les poissons exposés à fortes concentrations, en influençant l'activité du cytochrome P450, dont sont dépendantes les activités de ces enzymes. Chez *D. rerio*, exposé 7 jours à 0,5 mg/l de PBSA, les activités de la GST ont significativement augmenté (Huang et collab., 2020). Les niveaux de MDA étaient également significativement augmentés, en fonction de la durée et de la dose d'exposition, confirmant autant la présence d'un stress oxydatif que la peroxydation des lipides à la suite d'une exposition au PBSA.

Chez *C. auratus*, l'exposition à 337,15 µg/l de BMDB, pendant 28 jours, a entraîné une augmentation significative des activités de la SOD et de la GR, en plus d'inhiber l'activité de l'AchE et de la CAT (Ma et collab., 2017a). L'altération de la SOD, de la CAT et de la GR indique que ce filtre UV est en mesure de causer un stress oxydatif dans le foie des poissons exposés, alors que celle de l'AchE suggère qu'il pourrait endommager le système nerveux central.

Chez les organismes vivants, lorsqu'il y a un déséquilibre entre la production de DRO et les mécanismes de défense antioxydants des cellules, le stress oxydatif augmente, entraînant une perturbation de l'intégrité
de la membrane, un dysfonctionnement mitochondrial, l'apoptose et finalement la mort cellulaire (Esperanza et collab., 2019). Balázs et ses collaborateurs (2016) ont mesuré l'activité cytotoxique de quatre filtres UV (BP-3, 4-MBC, EHMC et OC) à l'aide de la souche BLYR de *Saccharomyces cerevisiae*. Seule la BP-3 s'est avérée cytotoxique chez la levure, avec une Cl₅₀ de 10,66 mg/l. La même substance a montré un effet cytotoxique sur la bactérie *Aliivibrio fischeri* (Cl₅₀ = 5,48 mg/l). La cytotoxicité de ces quatre filtres UV a été étudiée chez le cilié *Tetrahymena thermophila* à des concentrations jusqu'à 15 mg/l pendant 2, 4 et 6 heures (Gao et collab., 2013). Pour tous les filtres UV, la survie des cellules était semblable à celles des groupes témoins après deux heures d'exposition et significativement diminuée à la suite d'une exposition de quatre heures à des concentrations de 10 et 15 mg/l de BP-3 et de 4-MBC. Lorsque la durée d'exposition augmentait à six heures, la cytotoxicité de la BP-3 et du 4-MBC était observée à des concentrations plus faibles, soit 1 mg/l pour le 4-MBC et 5 mg/l pour la BP-3.

D'après les informations collectées, certains filtres UV peuvent induire des effets toxiques, notamment sur la croissance et la survie des organismes aquatiques des niveaux trophiques inférieurs (p. ex., algues et zooplancton), à des concentrations qui ont été mesurées dans les milieux aquatiques. Les études portant sur les effets sous-létaux montrent également qu'ils peuvent induire un stress oxydatif, pouvant ultimement endommager les lipides, les protéines et l'ADN des organismes aquatiques exposés.

6.2. Potentiel génotoxique

Les données de génotoxicité recueillies dans la littérature se limitent uniquement aux dérivés de la benzophénone. Elles sont résumées dans le tableau 23.

Contrairement aux données rapportées pour les paramètres de toxicité standards, les dérivés de la benzophénone présentent généralement un potentiel génotoxique à des concentrations supérieures à celles qui sont mesurées dans les usines de traitement d'eaux usées et le milieu récepteur. Par exemple, les CMEO de 14 benzophénones engendrant des effets génotoxiques chez *Salmonella typhimurium* se situaient entre 81,97 et > 1 000 mg/l (Zhao et collab., 2013). Chez des larves de ménés à grosse tête (*Pimephales promelas*), exposées 96 heures, les niveaux d'ARN et de protéines étaient réduits de façon significative à une concentration de 5,15 mg/l de BP, ceux de l'ADN étaient réduits de façon significative à une concentration de 5,15 mg/l de BP, ceux de l'ADN étaient réduits de façon significative à une concentration de set et de protéines du nombre de cellules, probablement en raison de la suppression mitotique, alors que les teneurs réduites en protéines indiquent que la synthèse protéique des larves exposées est altérée en réponse à une baisse de l'ARN.

Des dommages à l'ADN ont tout de même été observés à de faibles concentrations ($CE_{50} = 0,0018$ à 0,0086 mg/l), chez une espèce de corail (*Stylophora pistillata*) exposée pendant 8 heures au BP-2 (Downs et collab., 2014). Les résultats montrent que la génotoxicité est accrue par l'augmentation du nombre de groupes hydroxy sur les cycles benzéniques (Zhao et collab., 2013). La BP, qui ne contient pas de groupe hydroxy, présente la génotoxicité la plus faible, tandis que la BP-2, avec quatre groupes hydroxy, présente la génotoxicité la plus faible, tandis que la BP-2, avec quatre groupes hydroxy, présente la génotoxicité la plus élevée parmi les substances étudiées. En présence du même nombre de groupes hydroxy, ceux dont ces groupes se situent sur deux cycles benzéniques présentent une génotoxicité plus faible que ceux dont ces groupes se retrouvent sur un seul cycle. Par exemple, le THB présente une génotoxicité plus élevée que la BP-8. La présence d'un groupe méthoxy ou octyloxy en position 4 augmente la génotoxicité pour cette espèce de corail, tandis que le remplacement du groupe hydroxy par un groupe méthoxy ou octyloxy entraîne une diminution importante de la génotoxicité.

6.3. Potentiel de perturbation endocrinienne

Les nombreuses études ont démontré que les filtres UV possèdent un potentiel de perturbation endocrinienne chez les organismes aquatiques. Par exemple, Balázs et ses collaborateurs (2016) ont mesuré l'activité œstrogénique ou androgénique de quatre filtres UV chez les souches BLYES et BLYAS de *Saccharomyces cerevisiae*. La BP-3 a montré une activité œstrogénique ($CE_{50} = 1,47 \text{ mg/l}$) et antiandrogénique ($CE_{50} = 2,33 \text{ mg/l}$), le 4-MBC a montré une activité œstrogénique ($CE_{50} = 10,23 \text{ mg/l}$), antiœstrogénique et antiandrogéniques ($CE_{50} = 7,33 \text{ mg/l}$), tandis que l'EHMC et l'OC se sont révélés

antiœstrogéniques (CE₅₀ = 2,2 et 6,8 g/l, respectivement) et antiandrogéniques (CE₅₀ = 2 et 2,6 g/l). Kunz et ses collaborateurs (2006), qui ont utilisé une levure recombinante portant le récepteur d'œstrogènes de la truite arc-en-ciel, ont démontré que les composés couramment retrouvés dans les crèmes solaires possèdent des activités œstrogéniques: BP-1 (CE₅₀ = 0,17 mg/l), BP-2 (CE₅₀ = 6,14 mg/l), BP-3 (CE₅₀ = 5,0 mg/l), BP-4 (CE₅₀ = 91,8 mg/l), 3-BC (CE₅₀ = 2,92 mg/l), 4HBP (CE₅₀ = 0,59 mg/l), THB (CE₅₀ = 10,5 mg/l), 4DHB (CE₅₀ = 36,9 mg/l), EHS (CE₅₀ = 964,8 mg/l) et BS (CE₅₀ = 2,6 mg/l). La large plage de sensibilité des organismes testés pourrait s'expliquer par les structures moléculaires des composés étudiés, les filtres UV présentant des activités œstrogéniques caractérisées par au moins un groupe hydroxyle substitué sur le cycle. L'activité oestrogénique augmenterait chez les benzophénones possédant un groupement hydroxyle en position 3 ou 4, alors qu'elle serait encore plus marquée avec une double substitution en 2 et 4 (Kawamura et collab., 2003). Des substituants supplémentaires sur l'anneau phénolique auraient pour effet de diminuer les réponses œstrogéniques, en diminuant considérablement l'affinité du produit chimique pour les récepteurs donnés.

Toutes les études évaluant le potentiel de perturbation endocrinienne répertoriées dans la littérature consultée sont résumées dans les paragraphes suivants, ainsi que dans le tableau 24.

6.3.1. Induction de la vitellogénine (VTG)

La vitellogénine (VTG) est un biomarqueur moléculaire couramment utilisé sur des échantillons biologiques pour la détection rapide des effets œstrogéniques de composés chimiques. Il s'agit de la protéine précurseur du jaune d'œuf qui, dans des conditions normales, est exprimée chez les femelles poissons adultes, les reptiles, les amphibiens et les oiseaux. À la suite d'une exposition à certains contaminants, l'expression de la VTG peut être induite chez les mâles ainsi que chez les juvéniles. Une augmentation du taux de la VTG chez les femelles contribue à favoriser le développement des ovaires, tandis que, chez les mâles, une telle augmentation peut supprimer le développement des testicules et la maturation des spermatozoïdes. L'expression du gène de la VTG et le niveau de protéine induite sont donc largement utilisés pour surveiller les perturbations endocriniennes dans les évaluations de risque écotoxicologique.

Des études ont démontré que la BP-3 interagit avec les récepteurs d'œstrogènes et d'androgènes et engendre l'induction de la VTG chez les poissons. Après une exposition de 14 jours, la concentration de BP-3 correspondant à une diminution de 50 % des niveaux de VTG (Cl₅₀) chez la truite arc-en-ciel (Oncorhynchus mykiss) était de 749 µg/l (Coronado et collab., 2008). L'induction de la VTG a également été observée chez le médaka (Oryzias latipes) après une exposition de 21 jours à une concentration de 620 µg/l (Coronado et collab., 2008), ainsi qu'à la suite d'une exposition de 14 jours à une concentration de 90 µg/l de BP-3 (Kim et collab., 2014). Aucune induction de la VTG n'a été observée chez des ménés à grosse tête (Pimephales promelas) juvéniles, exposés 14 jours, à 3 900 µg/l de BP-3 (Kunz et collab., 2006). Pour les poissons-zèbres (Danio rerio), les résultats varient d'une étude à l'autre selon les conditions d'exposition au BP-3 (durée, stade de développement des organismes). Chez des embryons exposés pendant 48 heures à des concentrations jusqu'à 1 mg/l de BP-3, une corrélation positive significative a été mesurée entre la plus forte concentration d'exposition et l'expression de la VTG (Rodríguez-Fuentes et collab., 2015). En revanche, dans une autre étude, une inhibition proportionnelle à la concentration d'exposition a été observée chez des larves de la même espèce exposées 144 heures à des concentrations allant jusqu'à 500 µg/l (Zhang, Ma et collab., 2017). Ces résultats contradictoires semblent indiquer que la BP-3 peut induire des effets autant œstrogéniques qu'anti-œstrogéniques chez les poissons exposés. Aucune induction de la VTG n'a été observée chez des larves de poissons-zèbres exposés pendant 60 jours à des concentrations jusqu'à 500 µg/l, bien qu'une inversion de sexe dose-dépendante en faveur des femelles ait été observée (CSEO: 191 µg/l; CMEO: 388 µg/l) (Kinnberg et collab., 2015). La maturation des gonades a également été affectée chez les femelles (CSEO : 191 µg/l; CMEO : 388 µg/l) et les mâles (CSEO : 388 µg/l; CMEO : 470 µg/l). Aucune induction de la VTG n'a non plus été observée chez des poissons-zèbres adultes mâles exposés 14 jours à 312 µg/l de BP-3 (Bluthgen et collab., 2012). L'exposition de poissons-zèbres mâles adultes a par contre induit une augmentation significative de la VTG après 12 jours d'exposition, à une concentration de 268 µg/l de BP-3, mais pas à 63 et 437 µg/l (Kinnberg et collab., 2015). De facon générale, ces données indiquent que la BP-3 peut modifier les paramètres

endocriniens ou de reproduction chez les poissons, mais à des concentrations supérieures à celles qui sont mesurées dans l'environnement.

Des études portant sur des benzophénones structurellement analogues au BP-3 ont rapporté des effets œstrogéniques ainsi que des effets sur la reproduction chez des poissons, mais à des concentrations supérieures à celles qui sont potentiellement retrouvées dans l'environnement. L'exposition de ménés à grosse tête juvéniles à 4,9 mg/l de BP-1 et 8,78 mg/l de BP-2 a conduit à l'induction significative de la VTG après 14 jours (Kunz et collab., 2006, Fent et collab., 2008). Il en est de même pour des individus matures de cette espèce exposés à 1,2 mg/l de BP-2 pendant 15 jours (Weisbrod et collab., 2007). Cependant, des concentrations jusqu'à 5 mg/l de 4-DHB et de BP-4 n'ont pas entraîné une induction significative de la VTG chez les ménés à grosse tête exposés (Kunz, Galicia et collab., 2006).

D'autres filtres UV peuvent induire l'expression de la VTG chez les poissons exposés. C'est le cas chez le médaka femelle exposé à 50 µg/l d'OC (Yan et collab., 2020) et 5 µg/l de 4-MBC (Liang, Yan et collab., 2020), ainsi que chez le médaka mâle à des concentrations de 9.92 mg/l de 4-MBC et de 9.87 mg/l d'EHMC (Inui et collab., 2003). Cette augmentation était accompagnée de celle de la choriogénine (CHG), une protéine fabriquée dans le foie impliquée dans la formation de la couche interne des œufs. Les niveaux de VTG chez des ménés à grosse tête mâles ont augmenté de facon significative à la suite d'une exposition de 96 heures à 244,5 µg/l d'EHMC (Christen et collab., 2011). Cette hausse de VTG était accompagnée d'une diminution significative du nombre de spermatocytes chez les mâles et d'une baisse du nombre d'oocytes chez les femelles exposés à 394 µg/l d'EHMC. Une induction significative de VTG chez les ménés à grosse tête mâles a été observée à partir de 434.6 µg/l de 3-BC, alors que l'Et-PABA l'induit à des concentrations plus élevées (4 394 µg/l) (Fent et collab., 2008). En revanche, aucune induction de l'expression de la VTG n'a été observée chez D. rerio exposé 96 heures à 2,9 mg/l d'EHMC, 2,77 mg/l d'OD-PABA, 2,62 mg/l d'HS et 0,25 mg/l de 4-MBC (Schreurs et collab., 2002, Quintaneiro et collab., 2019), ou chez P. promelas exposé 14 jours à 0,75 mg/l de 4-MBC et 5,0 mg/l d'EHMC (Kunz et collab., 2006), ou chez O. latipes exposé à 5 mg/l d'EHMC pendant cing mois (Lee et collab., 2019). Toutes ces études montrent l'activité œstrogénique de plusieurs différents filtres UV chez les poissons, mais à des concentrations supérieures à celles qui sont actuellement détectées dans le milieu aquatique.

Chez les amphibiens, aucune induction de la VTG n'a été observée chez des embryons de la grenouille de Pérez, *Pelophylax perezi*, exposés 144 heures à des concentrations allant jusqu'à 1,3 mg/l de 4-MBC (Martins et collab., 2017). Chez le xénope lisse (*Xenopus laevis*), une augmentation des niveaux de la VTG, dépendante de la dose de 4-MBC, a été observée chez les deux sexes exposés jusqu'à 6 mg/l pendant 8 semaines (Haselman et collab., 2016). Celle-ci était accompagnée d'une accumulation de 4-MBC dans le foie, les reins et les gonades, ce qui a engendré des dommages dans ces organes. Bien qu'ils soient peu étudiés, les résultats chez les amphibiens laissent présager que l'activité œstrogénique des différents filtres UV est, encore une fois, observée à des niveaux supérieurs à ceux qui sont actuellement détectés dans l'environnement.

6.3.2. Effets sur la reproduction des invertébrés

Il a été démontré que les filtres UV affectaient la reproduction de plusieurs espèces d'invertébrés. Par exemple, la reproduction du crustacé *Daphnia magna* a été réduite après 21 jours d'exposition à 0,2 mg/l de 3-BC et de 4-MBC et 0,08 mg/l d'EHMC (Sieratowicz et collab., 2011). Cependant, une exposition à 0,5 mg/l de BP-3 n'a pas eu d'effet sur le nombre de nouveau-nés produits par adultes (Sieratowicz et collab., 2011).

De nombreuses études ont montré que les filtres UV affectent le développement de larves d'insectes, en plus de modifier la voie de réponse de certaines hormones, la réponse au stress et les mécanismes de détoxication. Les hormones comme l'ecdysone (EcR) jouent un rôle essentiel dans le développement et la reproduction des insectes, en contrôlant la mue, la nymphose et la métamorphose (Campos et collab., 2019). Les modifications des niveaux de ces hormones peuvent donc affecter le développement et la reproduction de certaines espèces d'invertébrés. Chez des larves de *Chironomus riparius*, exposées 24 heures à des concentrations croissantes dans l'eau (0 à 10 mg/l) de six filtres UV (EHMC, 4-MBC, BP-3,

4HBP, OC et OD-PABA), le gène codant pour le récepteur de l'EcR était significativement régulé à la hausse par une concentration de 0,1 mg/l de 4-MBC et de 1 mg/l d'EHMC ou d'OD-PABA (Ozáez et collab., 2013). En revanche, l'exposition au BP-3, au 4HBP et à l'OC n'a pas modifié l'expression de ce gène, aux concentrations testées. Les profils de transcription des gènes de l'ultraspiracle (Usp), une protéine indispensable au récepteur de l'ecdysone, et du récepteur lié aux œstrogènes (ERR) n'ont pas été significativement régulés, à l'exception du gène Usp qui a été inhibé à la plus forte concentration de BP-3.

Chez des embryons de *C. riparius*, l'expression de deux gènes codants pour le récepteur de l'ecdysone (*EcR, E74*) et des protéines de choc thermique (hsp70) était significativement régulée à la hausse jusqu'à trois heures suivant l'exposition à une concentration de 90 µg/l de BP-3 (Ozáez et collab., 2014). Une augmentation significative de l'expression de l'EcR, 24 heures après l'exposition, a également été observée chez les embryons de *C. riparius* exposés à 1 mg/l d'EHMC, de 4-MBC, de 4HBP, d'OC et d'OD-PABA, alors que l'OC, le 4-MBC et l'OD-PABA ont régulé à la hausse l'expression des hsp70 (Ozáez, Morcillo et collab., 2016a). Ces modifications transcriptionnelles peuvent expliquer que seuls 15 % des embryons au premier stade larvaire ont émergé après 72 heures en présence de BP-3, comparativement à 82 % chez le groupe témoin. Ce résultat est corroboré par une autre étude qui a démontré que l'expression de certains gènes codants pour différents groupes de protéines de choc thermique (sHsp) a été modifiée par l'exposition au 4-MBC et au BP-3 (Martin-Folgar et collab., 2018). Ces sHsp sont également impliquées dans des processus de développement, de sorte que les variations observées pourraient être liées à l'activité de perturbation endocrinienne décrite pour ces composés plutôt qu'à une réponse au stress.

L'activité transcriptionnelle de quatre autres gènes de signalisation endocrinienne a montré que les embryons de *C. riparius* semblaient plus sensibles à l'action des filtres UV que les larves à la suite d'une exposition de 24 heures de deux stades de vie à des concentrations de 0 à 10 mg/l de 4-MBC et de BP-3 (Ozáez, Aquilino et collab., 2016). Les gènes étudiés incluaient le récepteur hormonal 38 (HR38) et l'hormone juvénile (Met), qui régulent la mue et la métamorphose des insectes, le récepteur analogue à l'insuline (INSR), libéré en réponse aux signaux nutritionnels, et le récepteur de la progestérone associé aux membranes (MAPR) :

- HR38 était régulé à la hausse chez les embryons exposés à une concentration de 1 mg/l de 4-MBC et de BP-3, alors qu'aucune modification n'a été observée chez les larves;
- Met était régulé à la hausse chez les embryons exposés à une concentration de 0,1 mg/l de 4-MBC et de BP-3, alors qu'aucune modification n'a été observée chez les larves;
- MAPR était régulé à la hausse chez les embryons exposés à une concentration de 1 mg/l de BP-3, alors qu'aucune modification n'a été observée chez les larves;
- Chez les embryons, INSR était régulé à la hausse à la suite d'une exposition à 0,1 mg/l de BP-3, tandis qu'une concentration de 1 mg/l a engendré une régulation à la baisse. INSR était également régulé à la hausse chez les larves exposées à 1 et 10 mg/l de BP-3.

L'étude des effets multigénérationnels du 4-MBC chez le copépode marin *Tigriopus japonicus* a montré que les nauplii étaient plus sensibles au 4-MBC que les adultes (Chen et collab., 2018). Dans la génération F0, le 4-MBC a causé une mortalité significative à des concentrations de 5 et 10 µg/l. Bien que, pour les générations F1 à F3, l'exposition au 4-MBC n'ait pas affecté la survie, le taux d'éclosion et la durée de développement des nauplii aux stades copépodite et adulte ont diminué significativement chez ces dernières, dès une concentration de 0,5 µg/l. Tout comme chez les chironomes, ces effets sur la reproduction peuvent s'expliquer par une régulation à la hausse de l'expression du gène du récepteur de l'ecdysone, montrant l'importance de cette hormone dans le développement et la reproduction des invertébrés.

Les impacts rapportés des différents filtres UV chez les invertébrés aquatiques peuvent être amplifiés par la présence d'autres stress environnementaux. Par exemple, l'augmentation de la température de 18,5 à 23 °C accentue la toxicité de la BP-3 chez des larves de *C. riparius* lors d'essais de 8 ou 24 heures à des concentrations de 0,10 à 10 mg/l (Muñiz-González et Martínez-Guitarte, 2020). L'expression des gènes impliqués dans les différentes étapes du processus de détoxification était également altérée, se traduisant

par une modification des enzymes de phase I, II et III. Ces modifications pourraient donc compromettre la capacité des organismes à gérer la présence de contaminants environnementaux, tels que les filtres UV.

Ainsi, par leur réponse au niveau transcriptionnel, la plupart des filtres UV induisent une réponse cellulaire au stress environnemental chez certains invertébrés aquatiques, tel que *C. riparius* et *D. magna*. Les études ont démontré que les embryons sont particulièrement sensibles aux filtres UV, la régulation endocrinienne étant affectée pendant le développement.

6.3.3. Effets sur la reproduction des organismes benthiques exposés à partir des sédiments

Malgré leur fréquente détection dans les sédiments, peu d'études ont évalué le risque écotoxicologique chronique des filtres UV organiques pour les organismes exposés. Les quelques études disponibles, présentées ci-dessous, démontrent que certaines substances peuvent avoir un impact significatif sur la reproduction et le développement des invertébrés aquatiques benthiques exposés à partir des sédiments.

La richesse, l'abondance et la structure de la communauté de macroinvertébrés de la rivière Mar (Sever do Vouga, Portugal), ainsi que les taux de décomposition des feuilles, n'ont pas été affectées par des concentrations dans les sédiments allant jusqu'à 2 mg/kg de 4-MBC (Campos et collab., 2020). En revanche, la production primaire a été fortement réduite. Dans une étude sur plusieurs générations chez le chironome C. riparius, une concentration d'exposition dans les sédiments jusqu'à 8 mg/kg de BP-3 n'a provoqué aucun effet sur la fécondité, le taux d'émergence et le temps de développement de la première génération exposée (Campos et collab., 2019). Par contre, sa fertilité a été fortement compromise, aucun des œufs n'ayant éclos à la concentration la plus élevée de 8 mg/kg de BP-3. Chez la génération suivante (F1), la durée de développement a été altérée par une exposition parentale continue à 4 mg/kg de BP-3. De plus, une émergence réduite de 14,44 % a été observée. Les résultats laissent donc supposer que la toxicité de la BP-3 augmente au fil des générations exposées. Des études menées avec d'autres filtres UV ont montré que le 4-MBC et l'OC peuvent diminuer la croissance des larves de C. riparius, exposés 28 jours, en plus d'induire des effets sur le développement, tels qu'un retard de l'émergence et une réduction du poids des imagos, à des concentrations respectives de 4,17 et 2,05 mg/kg (Campos et collab., 2017a). Les effets observés sur le développement des larves induit par ces substances pourraient être liés à des altérations des niveaux de l'hormone ecdystéroïde médiée par le récepteur de l'ecdysone, comme il a été démontré précédemment.

Des concentrations croissantes de 3-BC et de 4-MBC dans les sédiments augmentaient la production embryonnaire de l'hydrobie des antipodes (*Potamopyrgus antipodarum*), un mollusque gastéropode d'eau douce, à la suite d'une exposition de 56 jours, mais diminuaient la reproduction du ver annélide oligochète, (*Lumbriculus variegatus*), à la suite d'une exposition de 28 jours (Schmitt et collab., 2008). La reproduction des gastéropodes augmentait de façon significative à des concentrations de 3-BC et de 4-MBC de 0,28 et 1,71 mg/kg (CSEO : 0,06 et 0,26 mg/kg, respectivement), alors que la mortalité augmentait de façon significative à des concentrations de 6,47 mg/kg de 3-BC et de 6,18 mg/kg de 4-MBC (CSEO : 1,49 et 1,47 mg/kg poids sec, respectivement). Clea représentait une CE₅₀ de 1,43 mg/kg pour le 3-BC, aucune concentration effective n'ayant pu être déterminée pour le 4-MBC. Bien que la reproduction de *L. variegatus* ait diminué, la biomasse totale des vers n'a pas été affectée puisque leur poids a augmenté après l'exposition au 3-BC.

D'autres études ont porté sur les effets du BMDM, de l'EHMC et de l'OC sur le poisson-zèbre (*Danio rerio*) dans un essai de 48 heures sur sédiments, ou sur l'activité de la déshydrogénase lors d'un essai de 48 heures chez la bactérie *Arthrobacter globiformis* (Kaiser et collab., 2012). Le BMDM et l'OC n'ont engendré aucun effet chez les deux organismes testés. Aucune mortalité n'a été observée chez *D. rerio* après une exposition à 1 000 mg/kg d'EHMC. Cette concentration a toutefois entraîné des malformations chez les poissons en développement, notamment une diminution du rythme cardiaque ou la formation d'œdème. L'EHMC a également réduit de façon significative le nombre d'embryons par escargot chez *Potamopyrgus antipodarum* (CMEO : 0,4 mg/kg) et chez *Melanoides tuberculata* (CMEO = 10 mg/kg)

(Kaiser et collab., 2012). Ces résultats indiquent que la reproduction est un paramètre d'effet plus sensible pour les organismes benthiques exposés à partir des sédiments contaminés. La plus faible sensibilité induite par les filtres UV retrouvés dans les sédiments, comparativement à celle qui a été observée à la suite d'une exposition dans l'eau, pourrait s'expliquer par leur faible disponibilité dans cette matrice. Cette hypothèse devra cependant être validée lors d'études subséquentes.

6.3.4. Effets sur la reproduction des poissons

Chez les médakas japonais, le nombre moyen d'œufs produits quotidiennement par femelle était significativement réduit après 28 jours d'exposition à une concentration de 26 µg/l de BP-3 (Kim et collab., 2014). L'éclosion des œufs n'était pas affectée. Dans une autre étude sur cette espèce, une diminution du succès d'éclosion a été rapportée après 14 jours d'exposition à 620 µg/l de BP-3 (Coronado et collab., 2008). L'exposition de ménés à grosse tête matures a réduit de façon significative le développement des spermatocytes chez les mâles et des ovocytes chez les femelles à la suite d'une exposition à 1,2 mg/l de BP-2 pendant 15 jours (Weisbrod et collab., 2007). Cette concentration a également engendré une diminution du nombre de tubercules nuptiaux chez les mâles. Chez les femelles exposées, les ovaires présentaient un nombre plus faible d'oocytes matures et étaient plus atrophiés. La reproductrice à des concentrations de 5 et 9,7 mg/l. Chez le poisson combattant (*Betta splendens*), une diminution légère, mais statistiquement significative, de la proportion relative de spermatozoïdes matures dans le tissu testiculaire a été observée à la suite d'une exposition de 28 jours à 0,1 mg/l de BP-3 (Chen et collab., 2016).

Ces résultats démontrent des effets œstrogéniques significatifs des dérivés de la benzophénone chez les poissons. Ils pourraient être dus à des modifications de l'expression des gènes responsables de la reproduction chez les organismes exposés. En effet, bien que les études présentées précédemment laissent sous-entendre que les filtres UV sont généralement peu génotoxiques aux concentrations environnementales, de nombreuses études ont montré que ces substances peuvent induire des modifications dans l'expression des gènes reliés aux perturbations endocriniennes chez les poissons et, ainsi, affecter leur reproduction. De telles modifications ont été étudiées chez des médakas japonais (Oryzias latipes) à la suite d'une exposition aux dérivés de la benzophénone. Chez des adultes exposés à différentes concentrations de BP-3 (0 à 90 µg/l) pendant 14 jours, les concentrations plasmatiques de testostérone (T) ont augmenté significativement chez les mâles à la plus forte concentration d'exposition, alors que le ratio 17β-estradiol (E2) sur T a montré une diminution significative (Kim et collab., 2014). Ces changements dans les hormones sexuelles pourraient s'expliquer par une altération de la transcription des gènes stéroïdiens dans les gonades. C'est, en effet, ce qu'indiquent les résultats d'expression génique chez les poissons de cette étude, où une régulation à la baisse des gènes star et cyp19a a été observée dans les ovaires et des gènes cyp11a, cyp17 et hsd3b dans les testicules. Des modifications transcriptionnelles chez deux stades de vie du poisson-zèbre ont également été observées à la suite de l'exposition à la BP-4. Chez des embryons exposés trois jours après l'éclosion, un gène responsable de la production d'œstrogènes (esr1) et des gènes impliqués dans la stéroïdogenèse (hsd17 β 3, cyp19a, cyp19b) et dans le développement de la thyroïde (hhex et pax8) ont été significativement régulés à la hausse à 3 000 μg/l de BP-4. Dans le foie des mâles adultes exposés 14 jours, esr1, esr2b, hsd17β3 et ar étaient régulés à la baisse à la même concentration, tout comme hsd17β3 dans les testicules. Cyp19b était pour sa part régulé à la hausse dans le cerveau. Ces résultats montrent une activité œstrogénique dans les embryons et le cerveau des mâles adultes, et une activité antiœstrogénique dans le foie. Ces résultats au niveau de la transcription confirment également une modification hormonale à deux stades différents du cycle de vie des poissons à la suite d'une exposition aux dérivés de la benzophénone.

Chez le poisson-zèbre, exposé 96 heures à 0,165 mg/l de 4-MBC, l'expression de Cyp19a2 a été régulée à la baisse (Quintaneiro et collab., 2019). Le gène cyp19 est responsable de la biosynthèse des stéroïdes. En codant pour l'enzyme aromatase, il convertit les androgènes en œstrogènes sur l'axe hypothalamuspituitaire-gonadique (HPG). De plus, cyp19 est un gène clé impliqué dans la différenciation sexuelle des poissons téléostéens, jouant un rôle important dans le comportement reproductif des mâles. Des altérations de l'expression de ce gène pourraient donc influencer le succès reproducteur des organismes exposés. L'autre dérivé du camphre, le 3-BC, entraîne une féminisation des caractéristiques sexuelles secondaires des poissons mâles, une altération des gonades chez les poissons mâles et femelles et une diminution de la fertilité et de la reproduction à des concentrations extrêmement faibles (Fent et collab., 2008). En effet, la CMEO pour le paramètre le plus sensible, l'histologie gonadique, était de 3 μ g/l, alors qu'à des concentrations de 74 et 285 μ g/l le développement des ovocytes et des spermatocytes était inhibé dans les gonades mâles et femelles.

Les données disponibles indiquent que l'EHMC aurait une activité hormonale multiple. En effet, chez le méné à grosse tête, l'expression de gènes impliqués dans les voies hormonales a montré que l'EHMC induisait des modifications de l'activité œstrogénique (régulation à la baisse de hsd17 β 3 dans le foie de mâles à partir de 37,5 µg/l et de femelles à une concentration de 394 µg/l), antiœstrogénique (régulation à la baisse de esr1 dans le foie de femelles à une concentration de 394 µg/l) et antiandrogénique (régulation à la baisse de ar dans le foie de femelles à partir d'une concentration de 37,5 µg/l) après une exposition de 14 jours (Christen et collab., 2011). Des résultats similaires ont été obtenus chez le poisson-zèbre, exposé sur la même période à des concentrations entre 2,2 et 890 µg/l d'EHMC (Zucchi et collab., 2011b). Une diminution significative du nombre d'œufs pondus a été observée chez le médaka japonais exposé 154 jours à une concentration de 0,05 mg/l d'EHMC (Lee et collab., 2019). Une diminution des hormones thyroïdiennes (HT) ayant été observée chez les organismes exposés, les effets perturbateurs de l'EHMC sur la thyroïde pourraient être en partie responsables de la diminution des performances de reproduction, puisque la thyroïde joue un rôle clé dans la maturation sexuelle.

Des embryons de médaka japonais (F1) exposés à des concentrations nominales de 5, 50 et 500 µg/l d'OC pendant 28 jours présentaient des délais d'éclosion, des taux de malformations et de mortalité supérieurs à ceux de leurs parents F0, ce qui semble indiquer des effets multigénérationnels de l'OC (Yan et collab., 2020). À la suite d'une exposition jusqu'à une concentration de 383 µg/l d'OC, pendant 16 jours, les niveaux sanguins de 11-kétotestostérone n'ont pas été modifiés chez les poissons-zèbres (Bluthgen et collab., 2014). Aucune altération significative de l'expression des gènes ar, esr1 et cyp19b n'a été notée dans le cerveau. Chez les embryons, les transcriptions de ar, esr1 et hsd17b3 ne montrent aucune altération significative de celles qui ont été retrouvées dans l'environnement, n'engendre pas de perturbations endocriniennes. Cependant, les résultats diffèrent lors d'expositions plus longues à des concentrations plus élevées. Ainsi, une exposition à 1,25 mg/l pendant 28 jours a entraîné des effets hormonaux multiples dans différents tissus, tels que la régulation positive d'esr1 dans les gonades et celle de cyp19b dans le cerveau des femelles, ce qui indique que l'OC possède une activité œstrogénique (Zhang, Ma et collab., 2016). La régulation à la baisse d'esr1 dans le cerveau des femelles et d'ar dans les testicules des mâles ont également démontré son activité anti-œstrogénique et antiandrogénique.

La fertilité et la reproduction des ménés à grosse tête ont été altérées à la suite d'une exposition de 21 jours à différentes concentrations de 3-BC (Fent et collab., 2008). Une réduction des caractéristiques sexuelles secondaires, se traduisant par une diminution significative du nombre de tubercules nuptiaux, a été observée chez les mâles exposés à 74 µg/l. Le développement de tubercules chez les mâles étant stimulé par la testostérone, leur atrophie peut résulter d'une inhibition de la production de testostérone par la 3-BC. Chez les femelles, l'histologie des gonades a montré des modifications des tissus dès une exposition à 3 µg/l 3-BC. À 74 µg/l, les ovaires des poissons exposés avaient beaucoup moins de follicules matures et étaient plus atrétiques. À 74 et 285 µg/l, la production d'ovules et la libération d'ovocytes matures étaient stoppées. Les auteurs attribuent cette réduction de l'activité de reproduction à la diminution du comportement d'accouplement des mâles démasculinisés.

6.3.5. Effets sur la reproduction des amphibiens

Peu d'études ont porté sur les effets directs des filtres UV sur la reproduction des amphibiens.

Chez le xénope lisse (*Xenopus laevis*), la perturbation endocrinienne engendrée par la BP-2 a été étudiée après l'exposition de larves à des concentrations de 0, 1,5, 3,0 ou 6,0 mg/l, jusqu'à huit semaines après la métamorphose (Haselman et collab., 2016). Une diminution significative de la croissance et de la survie ainsi que l'apparition de pathologies hépatiques et rénales ont été observées à la plus forte concentration testée. De l'hypertrophie et de l'hyperplasie des cellules folliculaires thyroïdiennes ont été observées chez

les larves à toutes les concentrations testées, ce qui indique des impacts induits par la BP-2 sur l'axe thyroïdien. Par ailleurs, une inversion de sexe complète a été observée aux concentrations les plus élevées, à savoir 3 et 6 mg/l. Chez cette espèce, des concentrations plus faibles de 4-MBC ou de 3-BC (1, 5 et 50 µg/l) n'ont affecté ni le taux de métamorphose, ni la longueur du corps et de la queue, ni le sexe ratio des têtards exposés (Fent et collab., 2008).

6.4. Exposition à des mélanges de filtres UV

Bien que la majorité des études portent sur la toxicité de chacun des filtres UV, dans l'environnement, les organismes ne sont pas exposés à ces substances de façon individuelle. En effet, les formulations des écrans solaires commerciaux ont été complexifiées pour obtenir les facteurs de protection solaire (FPS) élevés. Or, l'exposition à de multiples contaminants peut engendrer des effets additifs, synergiques ou antagonistes. Quelques études se sont penchées sur les effets d'une exposition à un mélange de filtres UV. Celles-ci sont résumées dans les paragraphes suivants.

Une diminution de la production de scytonémine et de chlorophylle *a*, ainsi qu'une diminution du taux de photosynthèse, a été observée chez la cyanobactérie *Calothrix* sp., exposée cinq jours à 100 ng/l d'une lotion solaire commerciale contenant 13 % d'HS, 5 % d'EHS, 4 % de BP-3, 2 % de BMDM et 2 % d'OC (Onesios, 2008). La scytonémine est un pigment de couleur brun-jaunâtre retrouvé dans la gaine de plus de 300 cyanobactéries. Dans une autre étude, l'exposition combinée à différentes concentrations de BP-1 et de BP-3 a affecté la croissance cellulaire et la production de pigments photosynthétiques de l'algue verte *Chlamydomonas reinhardtii* (Mao et collab., 2018a). L'inhibition était dépendante de la concentration du mélange, celle-ci passant de 5 % à une concentration de 1 mg/l à 62 % à une concentration de 5 mg/l.

Plusieurs études ont été menées chez des coraux exposés à des mélanges de filtres UV :

- Les effets d'un écran solaire commercial contenant de l'HS, de la BP-3, de l'OC et du BMDM ont été étudiés en laboratoire chez des organismes couramment retrouvés dans les eaux peu profondes des récifs coralliens, incluant le ver plat *Convolutriloba macropyga*, le corail mou *Xenia elongata*, l'anémone de verre *Aiptasia* sp. et la diatomée *Nitzschia* sp. (McCoshum et collab., 2016). Les organismes ont été exposés dans des microcosmes, dans une eau salée artificielle. Après 28 jours, tous les organismes exposés aux concentrations comprises entre 0,026 et 0,26 mg/l ont présenté une réduction de la croissance par rapport aux groupes témoins. Les coraux mous ont également montré une réduction des pulsations par minute des polypes à la plus forte concentration.
- Chez des coraux durs, l'exposition de sept jours à un mélange contenant 422,3 ± 37,3 μg/l d'EHMC et 33,5 ± 7,6 μg/l d'OC a provoqué une forte mortalité chez deux espèces, Seriatopora caliendrum (66,7 %-83,3 %) et Pocillopora damicornis (33,3 %-50 %), alors que, lors d'essais monochimiques, la mortalité n'a pas dépassé 33 % lors de l'exposition de *S. caliendrum* à 1 000 μg/l d'EHMC (He et collab., 2019c).
- Danovaro et ses collaborateurs (2008) ont exposé trois espèces de coraux (*Acropora* sp., *Stylophora pistillata* et *Millepora complanata*) à un écran solaire commercial, jusqu'à une concentration maximale de 100 µg/l, en laboratoire. Ces coraux provenaient de quatre récifs : île de Siladen (Indonésie), Akumal (Mexique), Phuket (Thaïlande) et Ras Mohammed (Égypte). Dans les 18 à 48 heures après, cette exposition a entraîné la libération de grandes quantités de mucus corallien (substance composée de zooxanthelles, des microalgues situées dans les coraux et fonctionnant en symbiose avec ceux-ci, et de tissu corallien). Le blanchiment complet des coraux durs a été observé dans les 96 heures. Les zooxanthelles relâchées des coraux exposés avaient perdu leurs pigments photosynthétiques et leur intégrité membranaire. Des études complémentaires réalisées sur les substances individuelles ont montré que l'EHMC, la BP-3 et le 4-MBC provoquent un blanchiment rapide et complet, contrairement aux autres composés testés, à savoir l'OC, le EHS et le BMDM. La présence d'EHMC, de BP-3 et de 4-MBC favoriserait la propagation d'un virus chez les zooxanthelles, comme l'ont préalablement démontré Danovaro et

Corinaldesi (2003). Ces infections sont responsables du blanchiment des coraux et de leur mort en 48 heures.

Corinaldesi et ses collaborateurs (2017) ont comparé les effets de deux écrans solaires commerciaux largement utilisés en Europe et aux États-Unis sur le développement embryonnaire et larvaire de l'oursin *Paracentrotus lividus*. Après 24 heures, une concentration de 50 μ g/l d'un premier écran solaire, contenant de la BP-3, de l'HS, de l'OC et du BMDM, a engendré des malformations chez l'ensemble des embryons exposés. Des altérations du développement ont été observées chez la moitié des embryons en présence de concentrations plus faibles, 10 et 20 μ g/l. Pour le second écran solaire, contenant uniquement de l'OC et du BMDM, le développement de 35 % des embryons de *P. lividus* était affecté à toutes les concentrations d'exposition (10 à 50 μ g/l). L'exposition des larves à la plus forte concentration (50 μ g/l) des deux écrans solaires a entraîné une diminution de l'activité de l'AchE.

Les niveaux d'expression des gènes EcR augmentaient en présence de 0,1 mg/l de 4-MBC chez les larves de *C. riparius*, mais revenaient à la normale après 96 heures d'exposition à des mélanges de 4-MBC avec 0,1, 1 et 10 mg/l de BP-3 ou d'EHMC (Ozáez, Morcillo et collab., 2016b). En revanche, les niveaux de hsp70 étaient régulés à la hausse après l'exposition à différents mélanges contenant du 4-MBC, de la BP-3 ou de l'EHMC. Ces données suggèrent que le 4-MBC, la BP-3 et l'EHMC pourraient avoir des effets antagonistes sur la transcription du gène EcR et un effet synergique sur l'activation du gène hsp70. Des essais de toxicité aiguë chez *Chlorella vulgaris*, *Daphnia magna* et *Danio rerio* en présence d'un mélange équivalent de BP-3 et de BP-4 ont également mis en évidence les effets antagonistes de ces deux substances (Du et collab., 2017). Dans le cas de la BP-3 et de la BP-4, ces dérivés de la benzophénone contiennent tous deux des groupes hydroxyles et benzophénones. Le nombre et la position des groupes hydroxyles sont les mêmes. La BP-4 contient un groupe acide sulfonique. Les effets antagonistes observés pourraient résulter de propriétés chimiques similaires, les substances entrant en compétition pour les sites de transports actifs présents à la surface cellulaire et du système métabolique.

Une réduction des effets toxiques a été observée chez *Daphnia magna* exposé à des mélanges de différents filtres UV organiques (Molins-Delgado et collab., 2016, Park et collab., 2017). La mortalité larvaire de *Chironomus riparius* exposé à des mélanges binaires de trois filtres UV (4-MBC, EHMC et BP-3) était également plus faible que l'exposition unique à ces filtres UV (Ozáez, Morcillo et collab., 2016b). Notons que l'étude de seize gènes liés au système endocrinien, au stress, au système immunitaire et aux mécanismes de biotransformation n'a montré aucune interaction significative à la suite d'une exposition à un mélange d'OC et d'OD-PABA chez *C. riparius* (Muñiz-González et Martínez-Guitarte, 2018).

Chez les poissons, une CL₂₅-97h de 100 mg/l a été obtenue chez le poisson-clown (*Amphiprion ocellaris*) en présence d'un écran solaire commercial à base de BP-3 (Barone et collab., 2019). Tous les organismes exposés ont cessé de s'alimenter dans les 49 premières heures, en plus de présenter un comportement de nage anormal tout au long de l'essai.

À titre d'information, à Quintana Roo, au Mexique, une étude sur la toxicité aiguë de neuf écrans solaires commerciaux (cinq non biodégradables et quatre biodégradables) chez le zooplancton indigène (*Brachionus* cf *ibericus, Cypridopsis vidua, Diaphanocypris meridana* et *Macrothrix triserialis*) a permis d'obtenir 21 CL₅₀-24h variant de 100 à 6 770 mg/l (Hernández-Pedraza et collab., 2020). La concentration maximale admissible (CMA) des écrans solaires biodégradables, obtenue en utilisant les CL₁₀, était de 157 mg/l, tandis que, pour les écrans solaires non biodégradables, la valeur était de 76 mg/l. Les écrans solaires non biodégradables présentaient donc un risque supérieur à celui des écrans biodégradables.

Le mode d'exposition de l'écran solaire semble influencer la toxicité chez les organismes aquatiques. En effet, l'évaluation de la fuite (déplacement vers des zones où les niveaux d'écran solaire sont plus faibles) chez des crevettes *Palaemon varians* exposées quatre heures à un gradient (0-300 mg/l) d'écrans solaires commerciaux a montré que l'application par immersion directe était davantage toxique (Araújo et collab., 2020). L'homogénéisation dans le milieu semblait diminuer le degré de répulsion. Les auteurs attribuent ce résultat à la viscosité plus élevée dans le milieu, empêchant la motilité des crevettes.

Toutes ces études montrent que les écrans solaires agissent conjointement pour engendrer une toxicité chez les organismes exposés, que ce soit de façon synergique ou antagoniste. L'interaction entre les substances présentes dans les mélanges peut dépendre de la concentration et de la combinaison des filtres UV impliqués. Des études complémentaires sont nécessaires pour comprendre davantage les processus qui se produisent entre les filtres UV lorsqu'ils sont simultanément retrouvés dans l'environnement.

7. Conclusions et perspectives

La population étant davantage sensibilisée aux risques reliés à une exposition au soleil, l'utilisation des filtres UV organiques dans les écrans solaires et autres produits de soins corporels (par exemple, shampoings, cosmétiques, etc.) est en constante croissance. Cette consommation accrue pourrait accentuer leur présence dans l'environnement et représenter une préoccupation majeure pour les organismes exposés.

Cette revue de littérature a permis de démontrer la présence de ces composés à l'échelle mondiale dans les différents compartiments des milieux aquatiques, généralement à des niveaux variant du nanogramme par litre (ng/l) au microgramme par litre (µg/l) pour les matrices liquides et de l'ordre du nanogramme par gramme (ng/g) pour les matrices solides. Ces substances semblent s'accumuler le long des chaînes trophiques, des accumulations ayant été mesurées autant dans les invertébrés et les poissons que dans les organismes supérieurs (oiseaux et mammifères).

Avec des valeurs atteignant les milligrammes par litre (mg/l), les dérivés de la benzophénone, tels que la BP-1, la BP-3 et la BP-4, sont les filtres UV organiques retrouvés aux concentrations les plus élevées dans les eaux des affluents et les effluents des usines de traitement des eaux usées. Quant aux composés qui sont plus lipophiles, comme le 4-MBC, l'EHMC et l'OC, ils ont tendance à s'adsorber sur les boues d'épuration, des niveaux de l'ordre du microgramme par gramme (µg/g) ayant été rapportés dans certaines études. L'efficacité de l'élimination des filtres UV dans les stations d'épuration dépend fortement de la technologie de traitement employée. De façon générale, la sorption, la biodégradation et la photolyse ne permettent pas d'éliminer les filtres UV de ces matrices. Leur dégradation est accélérée par la présence de photosensibilisateurs et de nutriments, mais réduite par la salinité, la matière organique dissoute (MOD) et les cations divalents. Une élimination incomplète dans les stations d'épuration des eaux usées entraîne ainsi un rejet continu dans le milieu récepteur.

Bien que nous ne disposons pas de données exhaustives pour l'ensemble de ces composés, les études consultées démontrent qu'aux concentrations potentiellement retrouvées dans l'environnement, de nombreux filtres UV présentent un potentiel toxique pour les organismes aquatiques, dont les algues, comme *Chlamydomonas reinhardtii*, *Desmodesmus subspicatus* et *Skeletonema pseudocostatum*, les invertébrés comme la daphnie *D. magna*, la moule *Mytilus galloprovinciallis*, l'oursin *Paracentrotus lividus* et la palourde *Ruditapes decussatus*, et les poissons, tel le poisson-zèbre *D. rerio*. Il s'agit, notamment, des dérivés de la benzophénone, de l'EHMC, du 4-MBC et de l'OC. Les effets sont multiples : survie, croissance, développement, comportement, métabolisme et expression génétique. De plus, aux concentrations environnementales, les filtres UV présentent également un potentiel toxique élevé qui met en danger la conservation des récifs coralliens.

Les variations saisonnières dans l'utilisation et la libération de certains composés peuvent également mettre en danger les espèces sensibles, en particulier pendant les périodes de reproduction. En effet, de par leur potentiel de perturbation endocrinienne, l'induction de la vitellogénine, l'altération des gonades, la diminution de la fertilité et de la reproduction et la féminisation des caractéristiques sexuelles des poissons mâles ont été associées aux filtres UV fréquemment utilisés, notamment les dérivés de la benzophénone et du camphre. Bien que certains filtres UV, comme le 3-BC, puissent modifier l'histologie gonadique dès une concentration de 3 µg/l, dans la majorité des études, l'activité œstrogénique des différents filtres UV est observée à des niveaux supérieurs à ceux qui sont actuellement détectés dans l'environnement. Notons toutefois que leur potentiel de bioaccumulation élevé, ainsi que l'exposition à long terme aux substances seules ou en mélange, peut avoir des effets négatifs à des concentrations bien inférieures à celles qui sont envisagées actuellement.

Certaines lacunes quant aux connaissances disponibles ont été relevées :

- En raison de l'absence de données disponibles au Canada, il apparaît nécessaire de valider le fait que les filtres UV organiques sont retrouvés dans les écosystèmes aquatiques du Québec, en

mettant en place des études permettant la caractérisation de la présence de ces substances dans les eaux usées, les boues d'épuration, ainsi que dans les lacs, rivières et régions du fleuve où les activités nautiques et de baignade sont pratiquées.

- La littérature consultée a montré que certains filtres UV ont des FBC estimés élevés, ce qui laisse sous-entendre qu'ils s'accumulent de façon importante le long de la chaîne alimentaire. C'est notamment le cas de l'EHS, du 4-MBC et de l'EHMC. Très peu d'études de bioaccumulation ont été répertoriées dans la littérature sur les espèces représentatives de l'écosystème québécois, et ce, autant en laboratoire que directement sur le terrain.
- Les études répertoriées ont évalué principalement la toxicité aiguë des filtres UV sur les organismes aquatiques. Par conséquent, les effets à long terme résultant d'une exposition chronique, qui constitue le scénario le plus fréquent, sont moins bien connus. Il existe bien quelques études évaluant les effets à long terme de certains dérivés de la benzophénone, du 4-MBC, de l'HS et de l'EHS, mais elles sont peu nombreuses, notamment pour les poissons et les amphibiens.
- Bien que les filtres UV puissent se métaboliser dans l'environnement, les expositions ont été réalisées principalement à l'aide du produit pur. Le risque pour les organismes aquatiques exposés aux produits de transformation est peu connu.
- Les études consultées ont démontré que plusieurs filtres UV peuvent engendrer des effets sur la reproduction des organismes exposés, en plus de produire des perturbations endocriniennes importantes. Cependant, la grande majorité des études ont été réalisées sur des substances individuelles. Considérant qu'un mélange de ces substances est retrouvé dans les milieux récepteurs, la réalisation d'études complémentaires se penchant précisément sur ces types d'effets sur les organismes et sur leurs progénitures (études multigénérationelles) exposés aux écrans solaires totaux est recommandée. Il en est de même quant aux produits de transformation de ces composés.
- Les études relatives aux effets génotoxiques des filtres UV organiques pour les organismes aquatiques se limitent aux dérivés de la benzophénone. La génotoxicité des autres familles de filtres UV n'est pas connue.
- La façon dont les communautés aquatiques récupèrent à la suite de leur exposition est également peu connue.

Un exercice de priorisation devrait être réalisé pour identifier les filtres UV qui devraient faire l'objet d'études en premier.

8. Références bibliographiques

- Abdallah, P., M. Deborde, F. Dossier Berne et N. Karpel Vel Leitner (2015). "Kinetics of chlorination of benzophenone-3 in the presence of bromide and ammonia." <u>Environmental Science & Technology</u> **49**(24): 14359.
- Abdelraheem, W. H. M., X. X. He, Z. R. Komy, N. M. Ismail et D. D. Dionysiou (2016). "Revealing the mechanism, pathways and kinetics of UV254nm/H2O2 based degradation of model active sunscreen ingredient PBSA." <u>Chemical Engineering Journal</u> 288: 824-833.
- Abdelraheem, W. H. M., X. X. He, X. D. Doan et D. D. Dionysiou (2015). "Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H2O2." Journal of Hazardous Materials 282: 233-240.
- Acosta-Salmón, H., et M. Davis (2007). "Inducing relaxation in the queen conch *Strombus gigas* (L.) for cultured pearl production." <u>Aquaculture</u> **262**(1): 73-77.
- Ahmed, M. B., M. A. H. Johir, J. L. Zhou, H. H. Ngo, W. Guo et K. Sornalingam (2017). "Photolytic and photocatalytic degradation of organic UV filters in contaminated water." <u>Current Opinion in Green</u> and Sustainable Chemistry 6: 85-92.
- Al-Anazi, A., W. H. Abdelraheem, C. Han, M. N. Nadagouda, L. Sygellou, M. K. Arfanis, P. Falaras, V.K. Sharma et D. D. Dionysiou (2018). "Cobalt ferrite nanoparticles with controlled compositionperoxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid." <u>Applied</u> <u>Catalysis B: Environmental</u> **221**: 266-279.
- Allinson, M., Y. Kameda, K. Kimura et G. Allinson (2018). "Occurrence and assessment of the risk of ultraviolet filters and light stabilizers in Victorian estuaries." <u>Environmental Science and Pollution</u> <u>Research</u> 25(12): 12022-12033.
- Almeida, C., A. Stepkowska, A. Alegre et J. M. Nogueira (2013). "Determination of trace levels of benzophenone-type ultra-violet filters in real matrices by bar adsorptive micro-extraction using selective sorbent phases." <u>J Chromatogr A</u> 11: 1-10.
- Almeida, S. dos S., T. L. Rocha, G. Qualhato, L. de A. R. Oliveira, C. L. do Amaral, E. C. da Conceição, S. M. T. D. Sabóia-Morais et E. F. L. C. Bailão (2019). "Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in *Poecilia reticulata*." <u>Aquatic Toxicology</u> 216: 105293.
- Alonso, M. B., M. L. Feo, C. Corcellas, P. Gago-Ferrero, C. P. Bertozzi, J. Marigo, L. Flach, A. C. O. Meirelles, V. L. Carvalho, A. F. Azevedo, J. P. M. Torres, J. Lailson-Brito, O. Malm, M. S. Díaz-Cruz, E. Eljarrat et D. Barceló (2015). "Toxic heritage: Maternal transfer of pyrethroid insecticides and sunscreen agents in dolphins from Brazil." <u>Environmental Pollution</u> 207: 391-402.
- Amine, H., E. Gomez, J. Halwani, C. Casellas et H. Fenet (2012). "UV filters, ethylhexyl methoxycinnamate, octocrylene and ethylhexyl dimethyl PABA from untreated wastewater in sediment from eastern Mediterranean river transition and coastal zones." <u>Marine Pollution Bulletin</u> 64(11): 2435-2442.
- Apel, C., J. Tang et R. Ebinghaus (2018). "Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas." <u>Environmental Pollution</u> **235**: 85-94.

- Araújo, C. V. M., A. Rodríguez-Romero, M. Fernández, E. Sparaventi, M. Márquez Medina et A. Tovar-Sánchez (2020). "Repellency and mortality effects of sunscreens on the shrimp *Palaemon varians*: Toxicity dependent on exposure method." <u>Chemosphere</u> 257: 1-9.
- Araújo, M. J., R. J. M. Rocha, A. Soares, J. L. Benedé, A. Chisvert et M. S. Monteiro (2018). "Effects of UV filter 4-methylbenzylidene camphor during early development of *Solea senegalensis* Kaup, 1858." <u>Science of the Total Environment</u> 628-629: 1395-1404.
- Archana, G., R. Dhodapkar et A. Kumar (2017). "Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes)." <u>Environmental Monitoring and Assessment</u> **189**(9).
- Arukwe, A., T. Eggen et M. Moder (2012). "Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments – A developing country case study from Owerri, Nigeria." <u>Science of the Total Environment</u> **438**: 94-102.
- Bachelot, M., Z. Li, D. Munaron, P. Le Gall, C. Casellas, H. Fenet et E. Gomez (2012). "Organic UV filter concentrations in marine mussels from French coastal regions." <u>Science of the Total Environment</u> 420: 273-279.
- Badia-Fabregat, M., C. E. Rodríguez-Rodríguez, P. Gago-Ferrero, A. Olivares, B. Piña, M. S. Díaz-Cruz, T. Vicent, D. Barceló et G. Caminal (2012). "Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus *Trametes versicolor*." <u>Journal of Environmental</u> <u>Management</u> 104: 114-120.
- Balázs, A., C. Krifaton, I. Orosz, S. Szoboszlay, R. Kovács, Z. Csenki, B. Urbányi et B. Kriszt (2016). "Hormonal activity, cytotoxicity and developmental toxicity of UV filters." <u>Ecotoxicology and</u> <u>Environmental Safety</u> **131**: 45-53.
- Balmer, M. E., H. R. Buser, M. D. Muller et T. Poiger (2005). "Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes." <u>Environmental Science & Technology</u> 39(4): 953-962.
- Bargar, T. A., D. A. Alvarez et V. H. Garrison (2015). "Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands national park, St. John, US Virgin Islands." <u>Marine</u> <u>Pollution Bulletin</u> **101**(1): 193-199.
- Barón, E., P. Gago-Ferrero, M. Gorga, I. Rudolph, G. Mendoza, A. M. Zapata, S. Díaz-Cruz, R. Barra, W. Ocampo-Duque, M. Páez, R. M. Darbra, E. Eljarrat et D. Barceló (2013). "Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America." <u>Chemosphere</u> 92(3): 309-316.
- Barone, A. N., C. E. Hayes, J. J. Kerr, R. C. Lee et D. B. Flaherty (2019). "Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (*Amphiprion ocellaris*)." <u>Environmental Science and Pollution Research</u> 26(14): 14513-14520.
- Barron, M. G., et I. R. Adelman (1984). "Nucleic-acid, protein-content, and growth of larval fish sublethally exposed to various toxicants." <u>Canadian Journal of Fisheries and Aquatic Sciences</u> **41**(1): 141-150.
- Bell, L. J., G. Ucharm, S. Patris, M. S. Díaz-Cruz, M. P. S. Roig et M. N. Dawson, M. N. (2017). "Sunscreen pollution analysis in Jellyfish Lake Coral Reef Research Foundation Palau." Coral Reef Research Foundation.

- Benedé, J. L., A. Chisvert, C. Moyano, D. L. Giokas et A. Salvador (2018). "Expanding the application of stir bar sorptive-dispersive microextraction approach to solid matrices: Determination of ultraviolet filters in coastal sand samples." Journal of Chromatography A 1564: 25-33.
- Benedé, J. L., A. Chisvert, D. L. Giokas et A. Salvador (2016). "Determination of ultraviolet filters in bathing waters by stir bar sorptive-dispersive microextraction coupled to thermal desorption-gas chromatography-mass spectrometry." <u>Talanta</u> **147**: 246-252.
- Benedé, J. L., A. Chisvert, A. Salvador, D. Sánchez-Quiles et A. Tovar-Sánchez (2014a). "Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid–liquid microextraction followed by gas chromatography-mass spectrometry." <u>Analytica Chimica Acta</u> 812: 50-58.
- Benedé, J. L., A. Chisvert, D. L. Giokas et A. Salvador (2014b). "Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in aqueous media." <u>Journal of Chromatography</u> <u>A</u> 1362: 25-33.
- Bills, T. D., G. E. Howe et L. L. Marking (1990). "Effects of water temperature, hardness and pH on the toxicity of benzocaine to eleven freshwater fishes." <u>Investigations in Fish Control</u>. La Crosse, WI: 0-6.
- Bluthgen, N., N. Meili, G. Chew, A. Odermatt et K. Fent (2014). "Accumulation and effects of the UV-filter octocrylene in adult and embryonic zebrafish (*Danio rerio*)." <u>Science of the Total Environment</u> 477: 207-217.
- Bluthgen, N., S. Zucchi et K. Fent (2012). "Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (*Danio rerio*)." <u>Toxicology and Applied Pharmacology</u> **263**(2): 184-194.
- Bratkovics, S., et Y. Sapozhnikova (2011). "Determination of seven commonly used organic UV filters in fresh and saline waters by liquid chromatography-tandem mass spectrometry." <u>Analytical Methods</u> **3**(12): 2943-2950.
- Bratkovics, S., E. Wirth, Y. Sapozhnikova, P. Pennington et D. Sanger (2015). "Baseline monitoring of organic sunscreen compounds along South Carolina's coastal marine environment." <u>Marine Pollution Bulletin</u> **101**(1): 370-377.
- Broderius, S. J., M. D. Kahl et M. D. Hoglund (1995). "Use of joint toxic response to define the primarymode of toxic action for diverse industrial organic-chemicals." <u>Environmental Toxicology and</u> <u>Chemistry</u> **14**(9): 1591-1605.
- Brooke, L. T (1984). "Acute Toxicities of Organic Chemicals to Fathead Minnows (*Pimephales promelas*)." University of Wisconsin-Superior. Center for Lake Superior Environmental Studies, 414 p.
- Bu, Y., J. Feng, X. Wang, Y. Tian, M. Sun et C. Luo (2017). "In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples." Journal of Chromatography A 1483: 48-55.
- Buser, H. R., M. E. Balmer, P. Schmid et M. Kohler (2006). "Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss rivers with inputs from wastewater treatment plants." <u>Environmental Science & Technology</u> **40**(5): 1427-1431.
- Buser, H. R., M. D. Muller, M. E. Balmer, T. Poiger et I. J. Buerge (2005). "Stereoisomer composition of the chiral UV filter 4-methylbenzylidene camphor in environmental samples." <u>Environmental Science &</u> <u>Technology</u> 39(9): 3013-3019.

- Cakir, Y., et S. M. Strauch (2005). "Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (*Rana pipiens*)." <u>Pharmacological Reports</u> **57**(4): 467-474.
- Call, D. J., et D. L. Geiger (1993). "Subchronic toxicities of industrial and agricultural chemicals to fathead minnows (*Pimephales promelas*)." Center for Lake Superior Environmental Studies, Lake Superior Research Institute, University of Wisconsin-Superior, 318 p.
- Call, D. J., L. T. Brooke, M. L. Knuth, S. H. Poirier et M. D. Hoglund (1985). "Fish subchronic toxicity prediction model for industrial organic-chemicals that produce narcosis." <u>Environmental Toxicology</u> <u>and Chemistry</u> **4**(3): 335-341.
- Call, D. J., L. T. Brooke et R. Kent (1979). "Estimates of 'no effect' concentrations of selected pesticides in freshwater organisms". Third Quarterly Progress Report to the USEPA.
- Calza, P., D. Vione, F. Galli, D. Fabbri, F. Dal Bello et C. Medana (2016). "Study of the photochemical transformation of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA) under conditions relevant to surface waters." <u>Water Research</u> 88: 235-244.
- Campos, D., A. L. Machado, D. N. Cardoso, A. R. R. Silva, P. V. Silva, A. C. M. Rodrigues, F. C. P. Simão, S. Loureiro, K. Grabicová, P. Nováková, A. M. V. M. Soares et J. L. T. Pestana (2020). "Effects of the organic UV-filter, 3-(4-methylbenzylidene) camphor, on benthic invertebrates and ecosystem function in artificial streams." <u>Environmental Pollution</u> 260: 113981.
- Campos, D., A. R. R. Silva, S. Loureiro, K. Grabicova, A. V. Stanova, A. Soares et J. L. T. Pestana (2019). "Two-generational effects of Benzophenone-3 on the aquatic midge *Chironomus riparius*." <u>Science</u> of the Total Environment **669**: 983-990.
- Campos, D., C. Gravato, C. Quintaneiro, O. Golovko, V. Žlábek, A. M. V. M. Soares et J. L. T. Pestana (2017a). "Toxicity of organic UV-filters to the aquatic midge *Chironomus riparius*." <u>Ecotoxicology</u> and Environmental Safety **143**: 210-216.
- Campos, D., C. Gravato, G. Fedorova, V. Burkina, A. M. V. M. Soares et J. L. T. Pestana (2017b). "Ecotoxicity of two organic UV-filters to the freshwater caddisfly *Sericostoma vittatum*." <u>Environmental Pollution</u> **228**: 370-377.
- Capela, D., M. Vila, M. Llompart, T. Dagnac, C. García-Jares, A. Alves et V. Homem (2019). "Footprints in the sand Assessing the seasonal trends of volatile methylsiloxanes and UV-filters." <u>Marine Pollution Bulletin</u> **140**: 9-16.
- Castiglioni, S., E. Davoli, F. Riva, M. Palmiotto, P. Camporini, A. Manenti et E. Zuccato (2018). "Data on occurrence and fate of emerging contaminants in a urbanised area." <u>Data in Brief</u> **17**: 533-543.
- Castro, M., J. O. Fernandes, A. Pena et S. C. Cunha (2018). "Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline." <u>Marine Environmental Research</u> **138**: 110-118.
- Celeiro, M., F. Vignola Hackbarth, S. G. de Souza, M. Llompart et V. J. P. Vilar (2018). "Assessment of advanced oxidation processes for the degradation of three UV filters from swimming pool water." Journal of Photochemistry and Photobiology A: Chemistry **351**: 95-107.

Chemspider (2020). "Search and share chemistry", [En ligne], [http://www.chemspider.com/].

- Chen, L., X. Li, H. Hong et D. Shi (2018). "Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod *Tigriopus japonicus*." <u>Aquatic Toxicology</u> **194**: 94-102.
- Chen, M. Y., M. Ike et M. Fujita (2002). "Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols." <u>Environmental Toxicology</u> **17**(1): 80-86.
- Chen, T. H., Y. T. Wu et W. H. Ding (2016). "UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (*Betta splendens*)." <u>Ecotoxicology</u> **25**(2): 302-309.
- Chisvert, A., J. L. Benedé et A. Salvador (2018). "Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques - A review." <u>Analytica</u> <u>Chimica Acta</u> **30**: 22-38.
- Chisvert, A., J. L. Benedé, J. L. Anderson, S. A. Pierson et A. Salvador (2017). "Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction." <u>Analytica Chimica Acta</u> **983**: 130-140.
- Christen, V., S. Zucchi et K. Fent (2011). "Effects of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) on expression of genes involved in hormonal pathways in fathead minnows (*Pimephales promelas*) and link to vitellogenin induction and histology." <u>Aquatic Toxicology</u> **102**(3-4): 167-176.
- Chung, W.-H., S.-H. Tzing et W.-H. Ding (2015). "Optimization of dispersive micro solid-phase extraction for the rapid determination of benzophenone-type ultraviolet absorbers in aqueous samples." Journal of Chromatography A **1411**: 17-22.
- Combi, T., M. G. Pintado-Herrera, P. A. Lara-Martin, S. Miserocchi, L. Langone et R. Guerra (2016).
 "Distribution and fate of legacy and emerging contaminants along the Adriatic Sea: A comparative study." <u>Environmental Pollution</u> 218: 1055-1064.
- Corinaldesi, C., E. Damiani, F. Marcellini, C. Falugi, L. Tiano, F. Bruge et R. Danovaro (2017). "Sunscreen products impair the early developmental stages of the sea urchin *Paracentrotus lividus*." <u>Scientific Reports</u> **7**.
- Coronado, M., H. De Haro, X. Deng, M. A. Rempel, R. Lavado and D. Schlenk (2008). "Estrogenic activity et reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish." <u>Aquatic Toxicology</u> **90**(3): 182-187.
- Crista, D. M. A., M. S. Miranda et J. da Silva (2015). "Degradation in chlorinated water of the UV filter 4-tertbutyl-40-methoxydibenzoylmethane present in commercial sunscreens." <u>Environmental</u> <u>Technology</u> **36**(10): 1319-1326.
- Cuderman, P., et E. Heath (2007). "Determination of UV filters and antimicrobial agents in environmental water samples." <u>Analytical and Bioanalytical Chemistry</u> **387**(4): 1343-1350.
- Cunha, S. C., L. Trabalón, S. Jacobs, M. Castro, M. Fernandez-Tejedor, K. Granby, W. Verbeke, C. Kwadijk, F. Ferrari, J. Robbens, I. Sioen, E. Pocurull, A. Marques, J. O. Fernandes et J. L. Domingo (2018). "UV-filters and musk fragrances in seafood commercialized in Europe Union: Occurrence, risk and exposure assessment." <u>Environmental Research</u> 161: 399-408.
- Cunha, S. C., A. Pena et J. O. Fernandes (2015a). "Dispersive liquid–liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters." Journal of Chromatography A **1414**: 10-21.

- Cunha, S. C., J. O. Fernandes, L. Vallecillos, G. Cano-Sancho, J. L. Domingo, E. Pocurull, F. Borrull, A. L. Maulvault, F. Ferrari, M. Fernandez-Tejedor, F. Van den Heuvel et M. Kotterman (2015b).
 "Co-occurrence of musk fragrances and UV-filters in seafood and macroalgae collected in European hotspots." <u>Environmental Research</u> 143: 65-71.
- Danovaro, R., L. Bongiorni, C. Corinaldesi, D. Giovannelli, E. Damiani, P. Astolfi, L. Greci et A. Pusceddu (2008). "Sunscreens cause coral bleaching by promoting viral infections." <u>Environmental Health</u> <u>Perspectives</u> **116**(4): 441-447.
- Danovaro, R., et C. Corinaldesi (2003). "Sunscreen products increase virus production through prophage induction in marine bacterioplankton." <u>Microbial Ecology</u> **45**(2): 109-118.
- da Silva, C. P., E. S. Emidio et M. R. R. de Marchi (2015). "Method validation using weighted linear regression models for quantification of UV filters in water samples." <u>Talanta</u> **131**: 221-227.
- Dawson, V. K., et P. A. Gilderhus (1979). Ethyl-p-aminobenzoate (Benzocaine): efficacy as an anesthetic for five species of freshwater fish. <u>Investigations in Fish Control</u>. La Crosse, WI: 0-5.
- De Laurentiis, E., M. Minella, M. Sarakha, A. Marrese, C. Minero, G. Mailhot, M. Brigante et D. Vione (2013). "Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4methoxybenzophenone-5-sulphonic acid) in aqueous solution: Reaction pathways and implications for surface waters." <u>Water Research</u> **47**(15): 5943-5953.
- Díaz-Cruz, M. S., P. Gago-Ferrero, M. Llorca et D. Barceló (2012). "Analysis of UV filters in tap water and other clean waters in Spain." <u>Analytical and Bioanalytical Chemistry</u> **402**(7): 2325-2333.
- Downs, C. A., E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro et Y. Loya (2016).
 "Toxicopathological effects of the sunscreen UV filter, oxybenzone (Benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands." <u>Archives of Environmental Contamination and Toxicology</u> 70(2): 265-288.
- Downs, C. A., E. Kramarsky-Winter. J. E. Fauth, R. Segal, O. Bronstein, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, A. Kushmaro et Y. Loya (2014). "Toxicological effects of the sunscreen UV filter, benzophenone-2, on planula and in vitro cells of the coral, *Stylophora pistillata*." <u>Ecotoxicology</u> 23: 175-191.
- Du, E. D., J. Q. Li, S. Q. Zhou, M. Li, X. Liu et H. J. Li (2018). "Insight into the degradation of two benzophenone-type UV filters by the UV/H2O2 advanced oxidation process." <u>Water</u> **10**(9).
- Du, Y., W. Q. Wang, Z. T. Pei, F. Ahmad, R. R. Xu, Y. M. Zhang et L. W. Sun (2017). "Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters." <u>International Journal of Environmental Research and Public Health</u> 14(11).
- Duirk, S. E., D. R. Bridenstine et D. C. Leslie (2013). "Reaction of benzophenone UV filters in the presence of aqueous chlorine: Kinetics and chloroform formation." <u>Water Research</u> **47**(2): 579-587.
- Ekpeghere, K. I., U.-J. Kim, S.-H. O, H.-Y. Kim et J.-E. Oh (2016). "Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea." <u>Science of the Total Environment</u> 542: 121-128.

Environment Agency (2008). "UV Filters in Cosmetics: Prioritisation for Environmental Assessment". 112 p.

- Emnet, P., S. Gaw, G. Northcott, B. Storey et L. Graham (2015). "Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base." <u>Environmental Research</u> 136: 331-342.
- Esperanza, M., M. Seoane, C. Rioboo, C. Herrero et Á. Cid (2019). "Differential toxicity of the UV-filters BP-3 and BP-4 in *Chlamydomonas reinhardtii*: A flow cytometric approach." <u>Science of the Total</u> <u>Environment</u> **669**: 412-420.
- Fekete-Kertész, I., Z. Kunglné-Nagy, K. Gruiz, A. Magyar, E. Farkas et M. Molnár (2015). "Assessing toxicity of organic aquatic micropollutants based on the total chlorophyll content of *Lemna minor* as a sensitive endpoint." <u>Periodica Polytechnica-Chemical Engineering</u> 59(4): 262-271.
- Fent, K., P. Y. Kunz, A. Zenker et M. Rapp (2010). "A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor." <u>Marine Environmental Research</u> 69: S4-S6.
- Fent, K., A. Zenker et M. Rapp (2010). "Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland." <u>Environmental Pollution</u> **158**(5): 1817-1824.
- Fent, K., P. Kunz et E. Gomez (2008). "UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish." <u>CHIMIA International Journal for Chemistry</u> **62**: 368-375.
- Fisch, K., J. J. Waniek et D. E. Schulz-Bull (2017). "Occurrence of pharmaceuticals and UV-filters in riverine run-offs and waters of the German Baltic Sea." <u>Marine Pollution Bulletin</u> **124**(1): 388-399.
- Fong, H. C., J. C. Ho, A. H. Cheung, K. P. Lai et W. K. Tse (2016). "Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos." <u>Chemosphere</u> **164**: 413-420.
- Gackowska, A., M. Przybylek, W. Studzinski et J. Gaca (2016). "Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite." <u>Environmental Science and Pollution Research</u> **23**(2): 1886-1897.
- Gago-Ferrero, P., M. Badia-Fabregat, A. Olivares, B. Piña, P. Blánquez, T. Vicent, G. Caminal, M. S. Díaz-Cruz et D. Barceló (2012). "Evaluation of fungal- and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1." <u>Science of the Total Environment</u> 427-428: 355-363.
- Gago-Ferrero, P., K. Demeestere, M. Silvia Díaz-Cruz et D. Barceló (2013). "Ozonation and peroxone oxidation of benzophenone-3 in water: Effect of operational parameters and identification of intermediate products." <u>Science of the Total Environment</u> **443**: 209-217.
- Gago-Ferrero, P., M. S. Díaz-Cruz et D. Barceló (2015). "UV filters bioaccumulation in fish from Iberian river basins." <u>Science of the Total Environment</u> **518-519**: 518-525.
- Gago-Ferrero, P., M. S. Díaz-Cruz et D. Barceló (2013). "Multi-residue method for trace level determination of UV filters in fish based on pressurized liquid extraction and liquid chromatography-quadrupole-linear ion trap-mass spectrometry." Journal of Chromatography A **19**: 93-101.
- Gago-Ferrero, P., M. S. Díaz-Cruz et D. Barceló (2011a). "Fast pressurized liquid extraction with in-cell purification and analysis by liquid chromatography tandem mass spectrometry for the determination of UV filters and their degradation products in sediments." <u>Analytical and Bioanalytical Chemistry</u> **400**(7): 2195-2204.

- Gago-Ferrero, P., M. S. Díaz-Cruz et D. Barceló (2011b). "Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants." <u>Chemosphere</u> **84**(8): 1158-1165.
- Gago-Ferrero, P., N. Mastroianni, M. S. Díaz-Cruz et D. Barceló (2013). "Fully automated determination of nine ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry." Journal of Chromatography A **1294**: 106-116.
- Gao, L., T. Yuan, C. Zhou, P. Cheng, Q. Bai, J. Ao, W. Wang et H. Zhang (2013). "Effects of four commonly used UV filters on the growth, cell viability and oxidative stress responses of the *Tetrahymena thermophila*." <u>Chemosphere</u> **93**(10): 2507-2513.
- Ge, J. L., D. Y. Huang, Z. R. Han, X. L. Wang, X. H. Wang et Z. Y. Wang (2019). "Photochemical behavior of benzophenone sunscreens induced by nitrate in aquatic environments." <u>Water Research</u> 153: 178-186.
- Ge, D., et H. K. Lee (2012). "A new 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples." <u>Journal of Chromatography A</u> 1251: 27-32.
- Geiger, D. L., C. E. Northcott, D. J. Call et L. T. Brooke (1985). "Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas): Volume II." Superior, WI, University of Wisconsin-Superior, Center for Lake Superior Environmental Studies.
- Gilart, N., N. Miralles, R. M. Marce, F. Borrull et N. Fontanals (2013). "Novel coatings for stir bar sorptive extraction to determine pharmaceuticals and personal care products in environmental waters by liquid chromatography and tandem mass spectrometry." <u>Analytica Chimica Acta</u> **774**: 51-60.
- Giokas, D. L., A. Salvador et A. Chisvert (2007). "UV filters: From sunscreens to human body and the environment." <u>Trac-Trends in Analytical Chemistry</u> **26**(5): 360-374.
- Giokas, D. L., V. A. Sakkas, T. A. Albanis et D. A. Lampropoulou (2005). "Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography mass spectrometry after micelle mediated extraction-solvent back extraction." <u>Journal of</u> <u>Chromatography A</u> **1077**(1): 19-27.
- Giokas, D. L., V. A. Sakkas et T. A. Albanis (2004). "Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry." Journal of Chromatography A **1026**(1-2): 289-293.
- Giraldo, A., R. Montes, R. Rodil, J. B. Quintana, L. Vidal-Liñán et R. Beiras (2017). "Ecotoxicological evaluation of the UV filters ethylhexyl dimethyl p-aminobenzoic acid and octocrylene using marine organisms *Isochrysis galbana*, *Mytilus galloprovincialis* and *Paracentrotus lividus*." <u>Archives of Environmental Contamination and Toxicology</u> **72**(4): 606-611.
- Goksoyr, A., K. E. Tollefsen, M. Grung, K. Loken, E. Lie, A. Zenker, K. Fent, M. Schlabach et S. Huber (2009). "Balsa raft crossing the Pacific finds low contaminant levels." <u>Environmental Science & Technology</u> **43**(13): 4783-4790.

- Gomez, E., M. Bachelot, C. Boillot, D. Munaron, S. Chiron, C. Casellas et H. Fenet (2011). "Bioconcentration of two pharmaceuticals (benzodiazepines) and two personal care products (UV filters) in marine mussels (*Mytilus galloprovincialis*) under controlled laboratory conditions." <u>Environmental Science and Pollution Research</u> **19**(7): 2561-2569.
- Gong, P., H. Yuan, P. Zhai, Y. Xue, H. Li, W. Dong et G. Mailhot (2015). "Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution." <u>Chemical Engineering Journal</u> **277**: 97-103.
- Grabicova, K., G. Fedorova, V. Burkina, C. Steinbach, H. Schmidt-Posthaus, V. Zlabek, H. K. Kroupova, R. Grabic et T. Randak (2013). "Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (*Oncorhynchus mykiss*) following a chronic toxicity test." Ecotoxicology and Environmental Safety **96**: 41-47.
- Grbović, G., P. Trebše, D. Dolenc, A. T. Lebedev et M. Sarakha (2013). "LC/MS study of the UV filter hexyl
 2- 4-(diethylamino)-2-hydroxybenzoyl -benzoate (DHHB) aquatic chlorination with sodium hypochlorite." Journal of Mass Spectrometry 48(11): 1232-1240.
- Groz, M. P., M. J. M. Bueno, D. Rosain, H. Fenet, C. Casellas, C. Pereira, V. Maria, M. J. Bebianno et E. Gomez (2014). "Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC-MS/MS." <u>Science of the Total Environment</u> 493: 162-169.
- Guo, Y., Q. X. Lin, B. B. Xu et F. Qi (2016). "Degradation of benzophenone-3 by the ozonation in aqueous solution: kinetics, intermediates and toxicity." <u>Environmental Science and Pollution Research</u> 23(8): 7962-7974.
- Guyon, A., K. F. Smith, M. P. Charry, O. Champeau et L. A. Tremblay (2018). "Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod." Journal of Xenobiotics 8(1).
- Han, C., B. Q. Xia, X. Z. Chen, J. C. Shen, Q. Miao et Y. Shen (2016). "Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QgLIT-MS/MS." Food Chemistry **194**: 1199-1207.
- Hanson, K. M., S. Narayanan, V. M. Nichols et C. J. Bardeen (2015). "Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates." <u>Photochemical & Photobiological Sciences</u> **14**(9): 1607-1616.
- Haselman, J. T., M. Sakurai, N. Watanabe, Y. Goto, Y. Onishi, Y. Ito, Y. Onoda, P. A. Kosian, J. J. Korte, R. D. Johnson, T. Iguchi et S. J. Degitz (2016). "Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in *Xenopus laevis* from embryo to juvenile." Journal of Applied Toxicology 36(12): 1651-1661.
- He, K., E. Hain, A. Timm, M. Tarnowski et L. Blaney (2019a). "Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay." <u>Science</u> of the Total Environment 650: 3101-3109.
- He, T., M. M. P. Tsui, C. J. Tan, K. Y. Ng, F. W. Guo, L. H. Wang, T. H. Chen, T. Y. Fan, P. K. S. Lam et M. B. Murphy (2019b). "Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species." <u>Science of the Total Environment</u> 651: 2391-2399.
- He, T., M. M. P. Tsui, C. J. Tan, C. Y. Ma, S. K. F. Yiu, L. H. Wang, T. H. Chen, T. Y. Fan, P. K. S. Lam et M. B. Murphy (2019c). "Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals." <u>Environmental Pollution</u> 245: 462-471.

- He, K., A. Timm et L. Blaney (2017). "Simultaneous determination of UV-filters and estrogens in aquatic invertebrates by modified quick, easy, cheap, effective, rugged, and safe extraction and liquid chromatography tandem mass spectrometry." Journal of Chromatography A 1509: 91-101.
- Hernández-Leal, L., H. Temmink, G. Zeeman et C.J.N. Buisman (2011). "Removal of micropollutants from aerobically treated grey water via ozone and activated carbon." <u>Water Research</u> **45**(9): 2887-2896.
- Hernández-Pedraza, M., J. A. Caballero-Vázquez, J. C. Peniche-Pérez, I. A. Pérez-Legaspi, D. A. Casas-Beltran et J. Alvarado-Flores (2020). "Toxicity and hazards of biodegradable and nonbiodegradable sunscreens to aquatic life of Quintana Roo, Mexico." <u>Sustainability</u> 12: 3270.
- Ho, Y. C., et W. H. Ding (2012). "Solid-phase extraction coupled simple on-line derivatization gas chromatography tandem mass spectrometry for the determination of benzophenone-type UV filters in aqueous samples." Journal of the Chinese Chemical Society **59**(1): 107-113.
- Holcombe, G. W., G. L. Phipps, M. L. Knuth et T. Felhaber (1984). "The acute toxicity of selected substituted phenols, benzenes and benzoic-acid esters to fathead minnows *Pimephales promelas*." Environmental Pollution Series a-Ecological and Biological **35**(4): 367-381.
- Hopkins, Z. R., S. Snowberger et L. Blaney (2017). "Ozonation of the oxybenzone, octinoxate, and octocrylene UV-filters: Reaction kinetics, absorbance characteristics, and transformation products." Journal of Hazardous Materials 338: 23-32.
- HSDB, 2020. « Comprehensive, peer-reviewed toxicology data for about 5,000 chemicals ». Hazardous Substances Data Bank, U.S. National Library of Medicine, [En ligne], [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?hsdb].
- Huang, X., Y. Li, T. Wang, H. Liu, J. Shi et X. Zhang (2020). "Evaluation of the oxidative stress status in zebrafish (*Danio rerio*) liver induced by three typical organic UV filters (BP-4, PABA and PBSA)." International Journal of Environmental Research and Public Health 17(2).
- Huang, Y., L. Luo, X. Y. Ma et X. C. C. Wang (2018). "Effect of elevated benzophenone-4 (BP4) concentration on *Chlorella vulgaris* growth and cellular metabolisms." <u>Environmental Science and</u> <u>Pollution Research</u> **25**(32): 32549-32561.
- Inui, M., T. Adachi, S. Takenaka, H. Inui, M. Nakazawa, M. Ueda, H. Watanabe, C. Mori, T. Iguchi et K. Miyatake (2003). "Effect of UV screens and preservatives on vitellogenin and choriogenin production in male medaka (*Oryzias latipes*)." <u>Toxicology</u> **194**(1-2): 43-50.
- Jentzsch, F., O. Olsson, J. Westphal, M. Reich, C. Leder et K. Kümmerer (2016). "Photodegradation of the UV filter ethylhexyl methoxycinnamate under ultraviolet light: Identification and in silico assessment of photo-transformation products in the context of grey water reuse." <u>Science of the Total Environment</u> **572**: 1092-1100.
- Jeon, H. K., Y. Chung et J. C. Ryu (2006). "Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography-mass spectrometry." <u>Journal of Chromatography A</u> **27**: 1-2.
- Ji, Y., L. Zhou, Y. Zhang, C. Ferronato, M. Brigante, G. Mailhot, X. Yang et J.-M. Chovelon (2013a). "Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices." <u>Water Research</u> 47(15): 5865-5875.

- Ji, Y., L. Zhou, C. Ferronato, A. Salvador, X. Yang et J.-M. Chovelon (2013b). "Degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid by TiO2 photocatalysis: Kinetics, photoproducts and comparison to structurally related compounds." <u>Applied Catalysis B: Environmental</u> 140-141: 457-467.
- Juliano, C., et G. A. Magrini (2017). "Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review." <u>Cosmetics</u> **4**(2): 11.
- Jurado, A., P. Gago-Ferrero, E. Vazquez-Sune, J. Carrera, E. Pujades, M. S. Díaz-Cruz et D. Barceló (2014). " Urban groundwater contamination by residues of UV filters." <u>Journal of Hazardous Materials</u> **271**: 141-149.
- Kaiser, D., A. Sieratowicz, H. Zielke, M. Oetken, H. Hollert et J. Oehlmann (2012). "Ecotoxicological effect characterisation of widely used organic UV filters." <u>Environmental Pollution</u> **163**: 84-90.
- Kalister, K., D. Dolenc, M. Sarakha, O. V. Polyakova, A. T. Lebedev et P. Trebse (2016). "Chromatography/mass spectrometry in the study of aquatic chlorination of UV filter avobenzone." Journal of Analytical Chemistry 71: 1289-1293.
- Kameda, Y., K. Kimura et M. Miyazaki (2011). "Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes." <u>Environmental Pollution</u> **159**(6): 1570-1576.
- Kasprzyk-Hordern, B., R. M. Dinsdale et A. J. Guwy (2009). "The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters." <u>Water Research</u> **43**(2): 363-380.
- Kasprzyk-Hordern, B., R. M. Dinsdale et A. J. Guwy (2008a). "Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solidphase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry." <u>Analytical and Bioanalytical Chemistry</u> **391**(4): 1293-1308.
- Kasprzyk-Hordern, B., R. M. Dinsdale et A. J. Guwy (2008b). "The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK." <u>Water Research</u> **42**(13): 3498-3518.
- Kawaguchi, M., R. Ito, H. Honda, N. Endo, N. Okanouchi, K. Saito, Y. Seto et H. Nakazawa (2008). "Simultaneous analysis of benzophenone sunscreen compounds in water sample by stir bar sorptive extraction with *in situ* derivatization and thermal desorption-gas chromatography-mass spectrometry." Journal of Chromatography A 25(2): 260-263.
- Kawamura, Y., Y. Ogawa, T. Nishimura, Y. Kikuchi, J. Nishikawa, T. Nishihara et K. Tanamoto (2003).
 "Estrogenic activities of UV stabilizers used in food contact plastics and benzophenone derivatives tested by the yeast two-hybrid assay." Journal of Health Science 49. 205-212.
- Kim, S., et K. Choi (2014). "Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review." <u>Environment International</u> **70**: 143-157.
- Kim, S., D. Jung, Y. Kho et K. Choi (2014). "Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (*Oryzias latipes*) – A two generation exposure study." <u>Aquatic Toxicology</u> 155: 244-252.
- Kim, S. D., J. Cho, I. S. Kim, B. J. Vanderford et S. A. Snyder (2007). "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters." <u>Water Research</u> 41(5): 1013-1021.

- Kinnberg, K. L., G. I. Petersen, M. Albrektsen, M. Minghlani, S. M. Awad, B. F. Holbech, J. W. Green, P. Bjerregaard et H. Holbech (2015). "Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, *Danio rerio*." <u>Environmental Toxicology and Chemistry</u> 34(12): 2833-2840.
- Kirschner, N., A. N. Dias, D. Budziak, C. B. da Silveira, J. Merib et E. Carasek (2017). "Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system." <u>Analytica Chimica Acta</u> **996**: 29-37.
- Klimová, Z., J. Hojerová et S. Pažoureková (2013). "Current problems in the use of organic UV filters to protect skin from excessive sun exposure." <u>Acta Chimica Slovaca 6(1)</u>: 82-88.
- Kotnik, K., T. Kosjek, B. Žegura, M. Filipič et E. Heath (2016). "Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment." <u>Chemosphere</u> **147**: 114-123.
- Kunz, P. Y., H. F. Galicia et K. Fent (2006). "Comparison of in vitro and in vivo estrogenic activity of UV filters in fish." <u>Toxicological Science</u> **90**(2): 349-361.
- Kupper, T., C. Plagellat, R. C. Braendli, L. F. de Alencastro, D. Grandjean et J. Tarradellas (2006). "Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment." <u>Water Research</u> 40(14): 2603-2612.
- Kusk, K. O., M. Avdolli et L. Wollenberger (2011). "Effect of 2,4-dihydroxybenzophenone (BP-1) on early life-stage development of the marine copepod *Acartia tonsa* at different temperatures and salinities." <u>Environmental Toxicology and Chemistry</u> **30**(4): 959-966.
- Lai, W. W.-P., K.-L. Chen et A. Y.-C. Lin (2020). "Solar photodegradation of the UV filter 4-methylbenzylidene camphor in the presence of free chlorine." <u>Science of the Total Environment</u> **722**: 1-10.
- Lambropoulou, D. A., D. L. Giokas, V. A. Sakkas, T. A. Albanis et M. I. Karayannis (2002). "Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction." Journal of Chromatography A **967**(2): 243-253.
- Langford, K. H., M. J. Reid, E. Fjeld, S. Øxnevad et K. V. Thomas (2015). "Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway." <u>Environment International</u> **80**: 1-7.
- Langford, K. H., et K. V. Thomas (2008). "Inputs of chemicals from recreational activities into the Norwegian coastal zone." Journal of Environmental Monitoring **10**(7): 894-898.
- Layton, S. M. (2015). "UV filters as common organic water contaminants: a toxicological study of selected UV filters on Daphnia magna, a monitoring study of selected Oklahoma lakes, and the development of an undergraduate endocrine disruption authentic research lab." Oklahoma State University.
- Lebedev, A. T., M. B. Kralj, O. V. Polyakovaa, E. A. Detenchuka, S. A. Pokryshkinc et P. Trebše (2020). "Identification of avobenzone by-products formed by various disinfectants in different types of swimming pool waters". <u>Environment International</u> **137**: 1-8.
- Lee, I., J. Lee, D. Jung, S. Kim et K. Choi (2019). "Two-generation exposure to 2-ethylhexyl 4-methoxycinnamate (EHMC) in Japanese medaka (*Oryzias latipes*) and its reproduction and endocrine related effects." <u>Chemosphere</u> **228**: 478-484.

- Lee, P. Y., et C. Y. Chen (2009). "Toxicity and quantitative structure-activity relationships of benzoic acids to *Pseudokirchneriella subcapitata*." Journal of Hazardous Materials **165**(1-3): 156-161.
- Lee, Y.-M., G. Lee, M.-K. Kim et K.-D. Zoh (2020). "Kinetics and degradation mechanism of benzophenone-3 in chlorination and UV/chlorination reactions". <u>Chemical Engineering Journal</u> 393: 1-10.
- Li, A. J., J. C. Law, C. H. Chow, Y. Huang, K. Li et K. S. Leung (2018). "Joint effects of multiple UV filters on zebrafish embryo development." <u>Environmental Science & Technology</u> **52**(16): 9460-9467.
- Li, A. J., Z. Sang, C.-H. Chow, J. C.-F. Law, Y. Guo et K. S. Y. Leung (2017). "Environmental behavior of 12 UV filters and photocatalytic profile of ethyl-4-aminobenzoate." <u>Journal of Hazardous Materials</u> **337**: 115-125.
- Li, J., L.-Y. Ma et L. Xu (2016). "Transformation of benzophenone-type UV filters by chlorine: Kinetics, products identification and toxicity assessments." Journal of Hazardous Materials **311**: 263-272.
- Li, J., L.-Y. Ma, M. Q. Tang et L. Xu (2013). "C-12-Ag wire as solid-phase microextraction fiber for determination of benzophenone ultraviolet filters in river water." Journal of Chromatography A **1298**: 1-8.
- Li, M.-H. (2012). "Acute toxicity of benzophenone-type UV filters and paraben preservatives to freshwater planarian, *Dugesia japonica*." <u>Toxicological & Environmental Chemistry</u> **94**(3): 566-573.
- Li, V. W., M. P. Tsui, X. Chen, M. N. Hui, L. Jin, R. H. Lam, R. M. Yu, M. B. Murphy, J. Cheng, P. K. Lam et S. H. Cheng (2016). "Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (*Danio rerio*) embryos." <u>nvironmental Science and Pollution</u> <u>Research</u> 23(9): 8275-8285.
- Li, W. H., Y. M. Ma, C. S. Guo, W. Hu, K. M. Liu, Y. Q. Wang et T. Zhu (2007). "Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant." <u>Water Research</u> **41**(15): 3506-3512.
- Li, Y., X. Qiao, C. Zhou, Y.-N. Zhang, Z. Fu et J. Chen (2016). "Photochemical transformation of sunscreen agent benzophenone-3 and its metabolite in surface freshwater and seawater." <u>Chemosphere</u> **153**: 494-499.
- Liang, M., S. Yan, R. Chen, X. Hong et J. Zha (2020). "3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (*Oryzias latipes*)." <u>Chemosphere</u> **249**: 126224.
- Liew, C. S. M., X. Li, H. Zhang et H. K. Lee (2018). "A fully automated analytical platform integrating water sampling-miniscale-liquid-liquid extraction-full evaporation dynamic headspace concentration-gas chromatography-mass spectrometry for the analysis of ultraviolet filters." <u>Analytica Chimica Acta</u> **1006**: 33-41.
- Liu, H., P. Sun, Q. He, M. B. Feng, H. X. Liu, S. G. Yang, L. S. Wang et Z. Y. Wang (2016). "Ozonation of the UV filter benzophenone-4 in aquatic environments: Intermediates and pathways." <u>Chemosphere</u> 149: 76-83.
- Liu, H., P. Sun, H. X. Liu, S. G. Yang, L. S. Wang et Z. Y. Wang (2015a). "Acute toxicity of benzophenonetype UV filters for *Photobacterium phosphoreum* and *Daphnia magna*: QSAR analysis, interspecies relationship and integrated assessment." <u>Chemosphere</u> **135**: 182-188.

- Liu, H., P. Sun, H. Liu, S. Yang, L. Wang et Z. Wang (2015b). "Hepatic oxidative stress biomarker responses in freshwater fish *Carassius auratus* exposed to four benzophenone UV filters." <u>Ecotoxicology and</u> <u>Environmental Safety</u> **119**: 116-122.
- Liu, H., L. Liu, Y. Xiong, X. Yang et T. Luan (2010). "Simultaneous determination of UV filters and polycyclic musks in aqueous samples by solid-phase microextraction and gas chromatography-mass spectrometry." Journal of Chromatography A 1217(43): 6747-6753.
- Liu, Q., Z. B. Chen, D. B. Wei et Y. G. Du (2014). "Acute toxicity formation potential of benzophenone-type UV filters in chlorination disinfection process." Journal of Environmental Sciences **26**(2): 440-447.
- Liu, Y. S., G. G. Ying, A. Shareef et R. S. Kookana (2013). "Degradation of six selected ultraviolet filters in aquifer materials under various redox conditions." <u>Groundwater Monitoring & Remediation</u> 33(4): 79-88.
- Liu, Y. S., G. G. Ying, A. Shareef et R. S. Kookana (2012a). "Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant." <u>Environmental Pollution</u> **165**: 225-232.
- Liu, Y. S., G. G. Ying, A. Shareef et R. S. Kookana (2012b). "Biodegradation of the ultraviolet filter benzophenone – 3 under different redox conditions." <u>Environmental Toxicology and Chemistry</u> 31(2): 289-295.
- Liu, Y. S., G. G. Ying, A. Shareef et R. S. Kookana (2011a). "Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water." <u>Environmental Chemistry</u> **8**(6): 581-588.
- Liu, Y. S., G. G. Ying, A. Shareef et R. S. Kookana (2011b). "Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatographytandem mass spectrometry." Journal of Chromatography A **1218**(31): 5328-5335.
- Liu, W., D. B. Wei, Q. Liu et Y. G. Du (2016). "Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process." <u>Chemosphere</u> **154**: 491-498.
- Loraine, G. A., et M. E. Pettigrove (2006). "Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California." <u>Environmental Science & Technology</u> **40**(3): 687-695.
- Lozano, C., S. Matallana-Surget, J. Givens, S. Nouet, L. Arbuckle, Z. Lambert et P. Lebaron (2020). "Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation." <u>Science</u> of The Total Environment **722**: 137803.
- Lucia, M., G.W. Gabrielsen, D. Herzke et G. Christensen (2016). "Screening of UV chemicals, bisphenols and siloxanes in the Arctic." Norsk Polarinstitutt. Norwegian Polar Institute.
- Ma, B. N., G. H. Lu, H. H. Yang, J. C. Liu, Z. H. Yan et M. Nkoom (2018). "The effects of dissolved organic matter and feeding on bioconcentration and oxidative stress of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) to crucian carp (*Carassius auratus*)." <u>Environmental Science and</u> <u>Pollution Research</u> 25(7): 6558-6569.
- Ma, B. N., G. H. Lu, J. C. Liu, Z. H. Yan, H. H. Yang et T. Pan (2017a). "Bioconcentration and multi-biomarkers of organic UV filters (BM-DBM and OD-PABA) in crucian carp." <u>Ecotoxicology and Environmental Safety</u> 141: 178-187.

- Ma, M., H. Wang, Q. Zhen, M. Zhang et X. Du (2017b). "Development of nitrogen-enriched carbonaceous material coated titania nanotubes array as a fiber coating for solid-phase microextraction of ultraviolet filters in environmental water." <u>Talanta</u> 167: 118-125.
- Ma, X. Y., K. Dong, L. Tang, Y. Wang, X. C. Wang, H. H. Ngo, R. Chen et N. Wang (2020). "Investigation and assessment of micropollutants and associated biological effects in wastewater treatment processes." Journal of Environmental Sciences 94: 119-127.
- MacManus-Spencer, L., M. Tse, J. Klein et A. Kracunas (2011). "Aqueous photolysis of the organic ultraviolet filter chemical octyl methoxycinnamate." <u>Environmental Science & Technology</u> 45: 3931-3937.
- MacPhee, C., et R. Ruelle (1969). "Lethal effects of 1888 chemicals upon four species of fish from Western North America." <u>Wildlife and Range Experiment Station</u> **3**:112 p.
- Magi, E., M. Di Carro, C. Scapolla et K. T. N. Nguyen (2012). "Stir bar sorptive extraction and LC-MS/MS for trace analysis of UV filters in different water matrices." <u>Chromatographia</u> **75**(17-18): 973-982.
- Magi, E., C. Scapolla, M. Di Carro, P. Rivaro et T. N. N. Kieu (2013). "Emerging pollutants in aquatic environments: monitoring of UV filters in urban wastewater treatment plants." <u>Analytical Methods</u> 5(2): 428-433.
- Manasfi, T., V. Storck, S. Ravier, C. Demelas, B. Coulomb et J.-L. Boudenne (2015). "degradation products of benzophenone-3 in chlorinated seawater swimming pools." <u>Environmental Science & Technology</u> **49**(15): 9308.
- Mao, F., Y. He et K. Y.-H. Gin (2020). "Antioxidant responses in cyanobacterium *Microcystis aeruginosa* caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations." Journal of Hazardous Materials **396**: 122587.
- Mao, F. J., Y. L. He et K. Y. H. Gin (2019). "Occurrence and fate of benzophenone-type UV filters in aquatic environments: a review." <u>Environmental Science-Water Research & Technology</u> **5**(2): 209-223.
- Mao, F. J., Y. L. He et K. Y. H. Gin (2018a). "evaluating the joint toxicity of two benzophenone-type UV filters on the green alga *Chlamydomonas reinhardtii* with response surface methodology." <u>Toxics</u> **6**(1).
- Mao, F. J., L. H. You, M. Reinhard, Y. L. He et K. Y. H. Gin (2018b). "Occurrence and fate of benzophenonetype UV filters in a tropical urban watershed." <u>Environmental Science & Technology</u> 52(7): 3960-3967.
- Mao, F. J., Y. L. He, A. Kushrnaro et K. Y. H. Gin (2017). "Effects of benzophenone-3 on the green alga *Chlamydomonas reinhardtii* and the cyanobacterium *Microcystis aeruginosa*." <u>Aquatic Toxicology</u> **193**: 1-8.
- Marchini, S., M. D. Hoglund, S. J. Broderius et M. Livia Tosato (1993). "Comparison of the susceptibility of daphnids and fish to benzene derivatives." <u>Science of the Total Environment</u> **134**: 799-808.
- Marchini, S., M. L. Tosato et T. J. Norbergking (1992). "Lethal and sublethal toxicity of benzene-derivatives to the fathead minnow, using a short-term test." <u>Environmental Toxicology and Chemistry</u> **11**(2): 187-195.
- Martin-Folgar, R., M. Aquilino, I. Ozáez et J. L. Martínez-Guitarte (2018). "Ultraviolet filters and heat shock proteins: effects in *Chironomus riparius* by benzophenone-3 and 4-methylbenzylidene camphor." <u>Environmental Science and Pollution Research</u> **25**(1): 333-344.

- Martins, D., M. S. Monteiro, A. Soares et C. Quintaneiro (2017). "Effects of 4-MBC and triclosan in embryos of the frog *Pelophylax perezi*." <u>Chemosphere</u> **178**: 325-332.
- Martins Ferreira Miranda de Távora, J. (2014). "Presence and environmental impact of personal-care products (UV filters) in urban aquatic ecosystems." Universitat Politècnica de Catalunya. Escola.
- McCoshum, S. M., A. M. Schlarb et K. A. Baum (2016). "Direct and indirect effects of sunscreen exposure for reef biota." <u>Hydrobiologia</u> **776**(1): 139-146.
- Mei, M., et X. Huang (2017). "Online analysis of five organic ultraviolet filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography." Journal of Chromatography A 24: 1-9.
- Mitchelmore, C. L., K. He, M. Gonsior, E. Hain, A. Heyes, C. Clark, R. Younger, P. Schmitt-Kopplin, A. Feerick, A. Conway et L. Blaney (2019). "Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii." <u>Science of the Total Environment</u> 670: 398-410.
- Mizukawa, A., D. Molins-Delgado, J. C. R. de Azevedo, C. V. S. Fernandes, S. Díaz-Cruz et D. Barceló (2017). "Sediments as a sink for UV filters and benzotriazoles: the case study of Upper Iguacu watershed, Curitiba (Brazil)." <u>Environmental Science and Pollution Research</u> 24(22): 18284-18294.
- Moeder, M., S. Schrader, U. Winkler et R. Rodil (2010). "At-line microextraction by packed sorbent-gas chromatography-mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples." Journal of Chromatography A **1217**(17): 2925-2932.
- Molins-Delgado, D., P. Gago-Ferrero, M. S. Díaz-Cruz et D. Barceló (2016). "Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment." <u>Environmental Research</u> **145**: 126-134.
- Molins-Delgado, D., M. Manez, A. Andreu, F. Hiraldo, E. Eljarrat, D. Barceló et M. S. Díaz-Cruz (2017). "A potential new threat to wild life: Presence of UV Filters in bird eggs from a preserved area." Environmental Science & Technology **51**(19): 10983-10990.
- Molins-Delgado, D., R. Muñoz, S. Nogueira, M. B. Alonso, J. P. Torres, O. Malm, R. L. Ziolli, R. A. Hauser-Davis, E. Eljarrat, D. Barceló et M. S. Díaz-Cruz (2018). "Occurrence of organic UV filters and metabolites in lebranche mullet (*Mugil liza*) from Brazil." <u>Science of the Total Environment</u> 618: 451-459.
- Molins-Delgado, D., J. Távora, M. Silvia Díaz-Cruz et D. Barceló (2017). "UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products." <u>Science of the Total Environment</u> 601-602: 975-986.
- Mottaleb, M. A., S. Usenko, J. G. O'Donnell, A. J. Ramirez, B. W. Brooks et C. K. Chambliss (2009). "Gas chromatography-mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish." Journal of Chromatography A **1216**(5): 815-823.
- Mturi, G. J., et B. S. Martincigh (2008). "Photostability of the sunscreening agent 4-tert-butyl-4methoxydibenzoylmethane (avobenzone) in solvents of different polarity and proticity." <u>Journal of</u> <u>Photochemistry and Photobiology A: Chemistry</u> **200**: 410-420
- Muñiz-González, A.-B., et J.-L. Martínez-Guitarte (2020). "Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae *Chironomus riparius*." Science of The Total Environment **698**: 134292.

- Muñiz-González, A. B., et J. L. Martínez-Guitarte (2018). "Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect *Chironomus riparius*." <u>Environmental Science and Pollution Research</u> 25(35): 35501-35514.
- Nakajima, M. T., T. Kawakami, T. Niino, Y. Takahashi et S. Onodera (2009). "Aquatic fate of sunscreen agents octyl-4-methoxycinnamate and octyl-4-di-methylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination by-products." <u>Journal of Health Sciences</u> **55**(3): 363-372.
- Nakajima, D., S. Asada, S. Kageyama, T. Yamamoto, H. Kuramochi, N. Tanaka, K. Takeda et S. Goto (2006). "Activity related to the carcinogenicity of plastic additives in the benzophenone group." <u>Journal of UOEH</u> 28(2): 143-56.
- Nataraj, B., K. Maharajan, D. Hemalatha, B. Rangasamy, N. Arul et M. Ramesh (2020). "Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development." <u>Science of The Total Environment</u> **718**: 134546.
- Negreira, N., I. Rodriguez, M. Ramil, E. Rubi et R. Cela (2009). "Sensitive determination of salicylate and benzophenone type UV filters in water samples using solid-phase microextraction, derivatization and gas chromatography tandem mass spectrometry." <u>Analytica Chimica Acta</u> **638**(1): 36-44.
- Negreira, N., I. Rodriguez, R. Rodil, E. Rubi et R. Cela (2013). "Optimization of matrix solid-phase dispersion conditions for UV filters determination in biota samples." <u>International Journal of Environmental Analytical Chemistry</u> **93**(11): 1174-1188.
- Negreira, N., P. Canosa, I. Rodriguez, M. Ramil, E. Rubi et R. Cela (2008). "Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography-mass spectrometry." Journal of Chromatography A **1178**(1-2): 206-214.
- Nguyen, K. T. N., C. Scapolla, M. Di Carro et E. Magi (2011). "Rapid and selective determination of UV filters in seawater by liquid chromatography-tandem mass spectrometry combined with stir bar sorptive extraction." <u>Talanta</u> **85**(5): 2375-2384.
- Nieto, A., F. Borrull, R. M. Marce et E. Pocurull (2009). "Determination of personal care products in sewage sludge by pressurized liquid extraction and ultra high performance liquid chromatography-tandem mass spectrometry." Journal of Chromatography A **1216**(30): 5619-5625.
- Oenning, A. L., D. Lopes, A. N. Dias, J. Merib et E. Carasek (2017). "Evaluation of two membrane-based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection." Journal of Separation Science **40**(22): 4431-4438.
- Okanouchi, N., H. Honda, R. Ito, M. Kawaguchi, K. Saito et H. Nakazawa (2008). "Determination of benzophenones in river-water samples using drop-based liquid phase microextraction coupled with gas chromatography/mass spectrometry." <u>Analytical Sciences</u> 24(5): 627-630.
- Onesios, K. M. (2008). "The effects of sunscreen on cyanobacteria."
- Orlikowska, A., K. Fisch et D. E. Schulz-Bull (2015). "Organic polar pollutants in surface waters of inland seas." <u>Marine Pollution Bulletin</u> **101**(2): 860-866.
- Ozáez, I., M. Aquilino, G. Morcillo et J.-L. Martínez-Guitarte (2016). "UV filters induce transcriptional changes of different hormonal receptors in *Chironomus riparius* embryos and larvae." <u>Environmental Pollution</u> **214**: 239-247.

- Ozáez, I., J. L. Martínez-Guitarte et G. Morcillo (2013). "Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect *Chironomus riparius*." <u>Science of the Total Environment</u> **456**: 120-126.
- Ozáez, I., J. L. Martínez-Guitarte et G. Morcillo (2014). "The UV filter benzophenone 3 (BP-3) activates hormonal genes mimicking the action of ecdysone and alters embryo development in the insect *Chironomus riparius* (Diptera)." <u>Environmental Pollution</u> **192**: 19-26.
- Ozáez, I., G. Morcillo et J.-L. Martínez-Guitarte (2016a). "Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of *Chironomus riparius*." Science of the Total Environment **557-558**: 240-247.
- Ozáez, I., G. Morcillo et J.-L. Martínez-Guitarte (2016b). "The effects of binary UV filter mixtures on the midge *Chironomus riparius*." <u>Science of the Total Environment</u> **556**: 154-162.
- Pablos, M. V., P. Garcia-Hortiguela et C. Fernandez (2015). "Acute and chronic toxicity of emerging contaminants, alone or in combination, in *Chlorella vulgaris* and *Daphnia magna*." <u>Environmental Science and Pollution Research</u> **22**(7): 5417-5424.
- Pan, X., L. Yan, C. Li, R. Qu et Z. Wang (2017). "Degradation of UV-filter benzophenone-3 in aqueous solution using persulfate catalyzed by cobalt ferrite." <u>Chemical Engineering Journal</u> **326**: 1197-1209.
- Pang, X., Y. Guo, Y. Zhang, B. Xu et F. Qi (2016). "LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism." <u>Chemical Engineering Journal</u> **304**: 897-907.
- Paredes, E., S. Perez, R. Rodil, J. B. Quintana et R. Beiras (2014). "Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels *Isochrysis galbana*, *Mytilus galloprovincialis*, *Paracentrotus lividus*, and *Siriella armata*." <u>Chemosphere</u> **104**: 44-50.
- Park, C.-B., J. Jang, S. Kim et Y. J. Kim (2017). "Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on *Daphnia magna*." <u>Ecotoxicology</u> and Environmental Safety **137**: 57-63.
- Pawlowski, S., A. C. Lanzinger, T. Dolich, S. Füßl, E. R. Salinas, S. Zok, B. Weiss, N. Hefner, P. Van Sloun,
 H. Hombeck, E. Klingelmann et M. Petersen-Thiery (2019). "Evaluation of the bioaccumulation of octocrylene after dietary and aqueous exposure." <u>Science of The Total Environment</u> 672: 669-679.
- Pedrouzo, M., F. Borrull, R. M. Marcé et E. Pocurull (2010). "Stir-bar-sorptive extraction and ultra-highperformance liquid chromatography-tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples." <u>Analytical and Bioanalytical Chemistry</u> **397**(7): 2833-2839.
- Peng, M. G., E. D. Du, Z. H. Li, D. D. Li et H. J. Li (2017). "Transformation and toxicity assessment of two UV filters using UV/H2O2 process." <u>Science of the Total Environment</u> **603**: 361-369.
- Peng, X., J. Jin, C. Wang, W. Ou et C. Tang (2015). "Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry." Journal of Chromatography A 1384: 97-106.
- Petersen, K., H. H. Heiaas et K. E. Tollefsen (2014). "Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of *Skeletonema pseudocostatum*." <u>Aquatic Toxicology</u> **150**: 45-54.

- Picot Groz, M., M. J. Martínez Bueno, D. Rosain, H. Fenet, C. Casellas, C. Pereira, V. Maria, M. J. Bebianno et E. Gomez (2014). "Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC-MS/MS." <u>Science of the</u> <u>Total Environment</u> **493**: 162-169.
- Pintado-Herrera, M. G., E. González-Mazo et P. A. Lara-Martin (2014). "Atmospheric pressure gas chromatography-time-of-flight-mass spectrometry (APGC-ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE)." <u>Analytica Chimica Acta</u> **851**: 1-13.
- Pintado-Herrera, M. G., E. González-Mazo et P. A. Lara-Martin (2013). "Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction-stir bar sorptive extraction-derivatization and gas chromatography-mass spectrometry." <u>Analytical and Bioanalytical Chemistry</u> **405**(1): 401-411.
- Piovesana, S., A. L. Capriotti, C. Cavaliere, G. La Barbera, R. Samperi, R. Z. Chiozzi et A. Lagana (2017). "A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis." <u>Analytical and Bioanalytical Chemistry</u> **409**(17): 4181-4194.
- Plagellat, C., T. Thomas, R. Furrer, L. F. de Alencastro, D. Grandjean et J. Tarradellas (2006). "Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland." <u>Chemosphere</u> 62(6): 915-25.
- Poiger, T., H. R. Buser, M. E. Balmer, P. A. Bergqvist et M. D. Muller (2004). "Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes." <u>Chemosphere</u> 55(7): 951-963.
- Quintaneiro, C., B. Teixeira, J. L. Benedé, A. Chisvert, A. M. V. M. Soares et M. S. Monteiro (2019). "Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos." <u>Chemosphere</u> **218**: 273-281.
- Ramirez, A. J., R. A. Brain, S. Usenko, M. A. Mottaleb, J. G. O'Donnell, L. L. Stahl, J. B. Wathen, B. D. Snyder, J. L. Pitt, P. Perez-Hurtado, L. L. Dobbins, B. W. Brooks et C. K. Chambliss (2009).
 "Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States." <u>Environmental Toxicology and Chemistry</u> 28(12): 2587-2597.
- Ramos, S., V. Homem, A. Alves et L. Santos (2016). "A review of organic UV-filters in wastewater treatment plants." <u>Environment International</u> **86**: 24-44.
- Ramos, S., V. Homem, A. Alves et L. Santos (2015). "Advances in analytical methods and occurrence of organic UV-filters in the environment A review." <u>Science of the Total Environment</u> **526**: 278-311.
- Ricking, M., J. Schwarzbauer et S. Franke (2003). "Molecular markers of anthropogenic activity in sediments of the Havel and Spree Rivers (Germany)." <u>Water Research</u> **37**(11): 2607-2617.
- Rocha, A. C., C. Camacho, E. Eljarrat, A. Peris, Y. Aminot, J. W. Readman, V. Boti, C. Nannou, A. Marques,
 M. L. Nunes et C. M. Almeida (2018). "Bioaccumulation of persistent and emerging pollutants in wild sea urchin *Paracentrotus lividus*." <u>Environmental Research</u> 161: 354-363.
- Rodil, R., M. Moeder, R. Altenburger et M. Schmitt-Jansen (2009a). "Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water." <u>Analytical and Bioanalytical</u> <u>Chemistry</u> **395**(5): 1513-1524.

- Rodil, R., et M. Moeder (2008a). "Development of a simultaneous pressurised-liquid extraction and cleanup procedure for the determination of UV filters in sediments." <u>Analytica Chimica Acta</u> **612**(2): 152-159.
- Rodil, R., et M. Moeder (2008b). "Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry." Journal of Chromatography A **1179**(2): 81-88.
- Rodil, R., J. B. Quintana, P. Lopez-Mahia, S. Muniategui-Lorenzo et D. Prada-Rodriguez (2008). "Multiclass determination of sunscreen chemicals in water samples by liquid chromatography – Tandem mass spectrometry." <u>Analytical Chemistry</u> 80(4): 1307-1315.
- Rodil, R., S. Schrader et M. Moeder (2009b). "Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples." Journal of Chromatography A **1216**(24): 4887-4894.
- Rodil, R., S. Schrader et M. Moeder (2009c). "Pressurised membrane-assisted liquid extraction of UV filters from sludge." Journal of Chromatography A **1216**(51): 8851-8858.
- Rodríguez-Fuentes, G., J. J. Sandoval-Gío, A. Arroyo-Silva, E. Noreña-Barroso, K. S. Escalante-Herrera et F. Olvera-Espinosa (2015). "Evaluation of the estrogenic and oxidative stress effects of the UV filter 3-benzophenone in zebrafish (*Danio rerio*) eleuthero-embryos." <u>Ecotoxicology and Environmental Safety</u> **115**: 14-18.
- Rodríguez-Rodríguez, C. E., D. Lucas, E. Barón, P. Gago-Ferrero, D. Molins-Delgado, S. Rodríguez-Mozaz, E. Eljarrat, M. Silvia Díaz-Cruz, D. Barceló, G. Caminal et T. Vicent (2014).
 "Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge." <u>Bioresource Technology</u> 168: 180-189.
- Rodríguez-Rodríguez, C. E., E. Baron, P. Gago-Ferrero, A. Jelic, M. Llorca, M. Farre, M. S. Díaz-Cruz, E. Eljarrat, M. Petrovic, G. Caminal, D. Barceló et T. Vicent (2012). "Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus *Trametes versicolor* in bioslurry reactor." Journal of Hazardous Materials 233: 235-243.
- Román, I. P., A. Chisvert et A. Canals (2011). "Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography–mass spectrometry for UV-filter determination in water samples." Journal of Chromatography A **1218**(18): 2467-2475.
- Rosal, R., A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera et A. R. Fernández-Alba (2010). "Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation." <u>Water Research</u> 44(2): 578-588.
- Rykowska, I., et W. Wasiak (2015). "Research trends on emerging environment pollutants a review." <u>Open Chemistry</u> **13**(1): 1353-1370.
- Sakkas, V. A., P. Calza, M. A. Islam, C. Medana, C. Baiocchi, K. Panagiotou et T. Albanis (2009). "TiO2/H2O2 mediated photocatalytic transformation of UV filter 4-methylbenzylidene camphor (4-MBC) in aqueous phase: Statistical optimization and photoproduct analysis." <u>Applied Catalysis</u> <u>B: Environmental</u> **90**(3): 526-534.
- Sakkas, V.A., D. A. Giokas, D. A. Lambropoulou et T. A. Albanis (2003). "Aqueous photolysis of the sunscreen agent octyl-dimethyl-p-aminobenzoic acid Formation of disinfection byproducts in chlorinated swimming pool water." Journal of Chromatography A **1016**(2): 211-222.

- Sánchez-Brunete, C., E. Miguel, B. Albero et J. L. Tadeo (2011). "Analysis of salicylate and benzophenonetype UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatographymass spectrometry." Journal of Chromatography A **1218**(28): 4291-4298.
- Sánchez Rodríguez, A., M. Rodrigo Sanz et J. R. Betancort Rodríguez (2015). "Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment." <u>Chemosphere</u> **131**: 85-90.
- Sankoda, K., K. Murata, M. Tanihata, K. Suzuki, K. Nomiyama et R. Shinohara (2015). "Seasonal and diurnal variation of organic ultraviolet filters from personal care products used along the japanese coast." <u>Archives of Environmental Contamination and Toxicology</u> **68**(2): 217-224.
- Santiago-Morales, J., M. J. Gomez, S. Herrera-Lopez, A. R. Fernandez-Alba, E. Garcia-Calvo et R. Rosal (2013). "Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent." <u>Water Ressources</u> **47**(15): 5546-5556.
- Santonocito, M., B. Salerno, C. Trombini, F. Tonini, M. G. Pintado-Herrera, G. Martínez-Rodríguez, J. Blasco, P. A. Lara-Martín et M. Hampel (2020). "Stress under the sun: Effects of exposure to low concentrations of UV-filter 4- methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam *Ruditapes philippinarum*." <u>Aquatic Toxicology</u> **221**: 105418.
- Santos, A. J. M., et J. da Silva (2019). "Environmental fate and behaviour of benzophenone-8 in aqueous solution." <u>Environmental Technology & Innovation</u> **13**: 48-61.
- Santos, A. J. M., et J. da Silva (2017). "Fate and behaviour of the UV filter 3-methylbutyl-(2E)-3-(4methoxyphenyl)-acrylate (IMC) in aqueous solution." <u>Journal of Environmental Chemical</u> <u>Engineering</u> **5**(3): 2469-2479.
- Santos, A. J. M., D. M. A. Crista, M. S. Miranda, I. F. Almeida, J. P. S. de Silva, P. C. Costa, M. H. Amaral, P. A. L. Lobao, J. M. S. Lobo et J. da Silva (2013). "Degradation of UV filter 2-ethylhexyl-4methoxycinnamate and 4-tert-butyl-4-methoxydibenzoylmethane in chlorinated water." <u>Environmental Chemistry</u> 10 (2):127-134.
- Santos, A. J. M., M. S. Miranda et J. da Silva (2012). "The degradation products of UV filters in aqueous and chlorinated aqueous solutions." <u>Water Research</u> **46**(10): 3167-3176.
- Schaap, I., et D. M. E. Slijkerman (2018). "An environmental risk assessment of three organic UV-filters at Lac Bay, Bonaire, Southern Caribbean." <u>Marine Pollution Bulletin</u> **135**: 490-495.
- Scheil, V., R. Triebskorn et H. R. Kohler (2008). "Cellular and stress protein responses to the UV filter 3-benzylidene camphor in the amphipod crustacean *Gammarus fossarum* (Koch 1835)." <u>Archives</u> of Environmental Contamination and Toxicology **54**(4): 684-689.
- Schmitt, C., M. Oetken, O. Dittberner, M. Wagner et J. Oehlmann (2008). "Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates *Potamopyrgus antipodarum* and *Lumbriculus variegatus*." <u>Environmental Pollution</u> **152**(2): 322-329.
- Schreurs, R., P. Lanser, W. Seinen et B. van der Burg (2002). "Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay." <u>Archives of Toxicology</u> 76(5-6): 257-261.

- Semones, M. C., C. M. Sharpless, A. A. MacKay et Y.-P. Chin (2017). "Photodegradation of UV filters oxybenzone and sulisobenzone in wastewater effluent and by dissolved organic matter." <u>Applied</u> <u>Geochemistry</u> **83**: 150-157.
- Serra-Roig, M. P., A. Jurado, M. S. Díaz-Cruz, E. Vázquez-Suné, E. Pujades et D. Barceló (2016). "Occurrence, fate and risk assessment of personal care products in river-groundwater interface." <u>Science of the Total Environment</u> **568**: 829-837.
- Sieratowicz, A., D. Kaiser, M. Behr, M. Oetken et J. Oehlmann (2011). "Acute and chronic toxicity of four frequently used UV filter substances for *Desmodesmus subspicatus* and *Daphnia magna*." <u>Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering</u> **46**(12): 1311-1319.
- Simonich, S. L., W. M. Begley, G. Debaere et W. S. Eckhoff (2000). "Trace analysis of fragrance materials in wastewater and treated wastewater." <u>Environmental Science & Technology</u> **34**(6): 959-965.
- Simonich, S. L., T. W. Federle, W. S. Eckhoff, A. Rottiers, S. Webb, D. Sabaliunas et W. De Wolf (2002). "Removal of fragrance materials during US and European wastewater treatment." <u>Environmental</u> <u>Science & Technology</u> **36**(13): 2839-2847.
- Soto-Vázquez, L., M. Cotto, C. Morant, J. Duconge et F. Márquez (2017). "Facile synthesis of ZnO nanoparticles and its photocatalytic activity in the degradation of 2-phenylbenzimidazole-5-sulfonic acid " Journal of Photochemistry and Photobiology A: Chemistry **332**(1): 331-336.
- Sousa, J. C. G., A. R. Ribeiro, M. O. Barbosa, C. Ribeiro, M. E. Tiritan, M. F. R. Pereira et A. M. T. Silva (2019). "Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers." <u>Science of the Total Environment</u> 649: 1083-1095.
- Stackelberg, P. E., E. T. Furlong, M. T. Meyer, S. D. Zaugg, A. K. Henderson et D. B. Reissman (2004). "Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-watertreatment plant." <u>Science of the Total Environment</u> **329**(1-3): 99-113.
- Stein, H. V., C. J. Berg, J. N. Maung, L. E. O'Connor, A. E. Pagano, L. A. MacManus-Spencer et M. G. Paulick (2017). "Photolysis and cellular toxicities of the organic ultraviolet filter chemical octyl methoxycinnamate and its photoproducts." <u>Environmental Science-Processes & Impacts</u> **19**(6): 851-860.
- Stien, D., F. Clergeaud, A. M. S. Rodrigues, K. Lebaron, R. Pillot, P. Romans, S. Fagervold et P. Lebaron (2019). "Metabolomics reveal that octocrylene accumulates in *Pocillopora damicornis* tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction." <u>Analytical Chemistry</u> **91**(1): 990-995.
- Studzinski, W., et A. Gackowska (2018). "Evaluation of Degradation Efficiency of 2'-Ethylhexyl 4-(Dimethylamino) Benzoate under the Influence of Oxidizing Agents." Journal of Ecological Engineering **19**(4): 236-241.
- Studzinski, W., et A. Gackowska (2017). "Comparison of methods for ethylhexyl 4-methoxycinnamate acid ester oxidation in water medium." Journal of Ecological Engineering **18**(4): 204-210.
- Studzinski, W., A. Gackowska, M. Przybylek et J. Gaca (2017). "Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species." <u>Environmental Science and Pollution Research</u> **24**(9): 8049-8061.

- Suárez, R., S. Clavijo, J. Avivar et V. Cerdà (2016). "On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC-UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant." <u>Talanta</u> **148**: 589-595.
- Sun, H. Q., Y. Du, Z. Y. Zhang, W. J. Jiang, Y. M. Guo, X. W. Lu, Y. M. Zhang et L. W. Sun (2016). "Acute toxicity and ecological risk assessment of benzophenone and N,N-diethyl-3 methylbenzamide in personal care products." <u>International Journal of Environmental Research and Public Health</u> 13(9).
- Sun, X. F., D. B. Wei, W. Liu, J. L. Geng, J. Liu et Y. G. Du (2019). "Formation of novel disinfection byproducts chlorinated benzoquinone, phenyl benzoquinones and polycyclic aromatic hydrocarbons during chlorination treatment on UV filter 2,4-dihydroxybenzophenone in swimming pool water." Journal of Hazardous Materials 367: 725-733.
- Tao, J., C. Bai, Y. Chen, H. Zhou, Y. Liu, Q. Shi, W. Pan, H. Dong, L. Li, H. Xu, R. Tanguay, C. Huang et Q. Dong (2020). "Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish." <u>Science of The Total Environment</u> 721: 137686.
- Tarazona, I., A. Chisvert, Z. León et A. Salvador (2010). "Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry." Journal of Chromatography A **1217**(29): 4771-4778.
- Tashiro, Y., et Y. Kameda (2013). "Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan." <u>Marine Pollution Bulletin</u> **77**(1): 333-340.
- Thienpont, B., A. Tingaud-Sequeira, E. Prats, C. Barata, P. J. Babin et D. Raldua (2011). "Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis." <u>Environmental Science & Technology</u> **45**(17): 7525-7532.
- Thorel, E., F. Clergeaud, L. Jaugeon, A. M. S. Rodrigues, J. Lucas, D. Stienand et P. Lebaron (2020). "Effect of 10 UV filters on the brine shrimpartemia salinaand the marine microalga *Tetraselmis* sp." <u>Toxics</u> **8**(29).
- Torres, T., I. Cunha, R. Martins et M. M. Santos (2016). "Screening the toxicity of selected personal care products using embryo bioassays: 4-MBC, propylparaben and triclocarban." <u>International Journal of Molecular Sciences</u> **17**(10).
- Tosato, M. L., L. Vigano, B. Skagerberg et S. Clementi (1991). "A new strategy for ranking chemical hazards framework and application." <u>Environmental Science & Technology</u> **25**(4): 695-702.
- Tovar-Sanchez, A., D. Sanchez-Quiles, G. Basterretxea, J. L. Benedé, A. Chisvert, A. Salvador, I. Moreno-Garrido et J. Blasco (2013). "Sunscreen products as emerging pollutants to coastal waters." <u>Plos</u> <u>One</u> **8**(6).
- Trebse, P., O. V. Polyakova, M. Baranova, M. B. Kralj, D. Dolenc, M. Sarakha, A. Kutin et A. T. Lebedev (2016). "Transformation of avobenzone in conditions of aquatic chlorination and UV-irradiation." Water Research **101**: 95-102.
- Trujillo-Rodriguez, M. J., H. Nan et J. L. Anderson (2018). "Expanding the use of polymeric ionic liquids in headspace solid-phase microextraction: Determination of ultraviolet filters in water samples." <u>Journal of Chromatography A</u> 1540: 11-20.
- Tsai, D.-Y., C.-L. Chen et W.-H. Ding (2014). "Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish." <u>Food Chemistry</u> 154: 211-216.

- Tsoumachidou, S., T. Velegraki et I. Poulios (2016). "TiO2 photocatalytic degradation of UV filter para-aminobenzoic acid under artificial and solar illumination." <u>Journal of Chemical Technology and Biotechnology</u> **91**(6): 1773-1781.
- Tsui, M. M. P., L. Chen, T. He, Q. Wang, C. Hu, J. C. W. Lam et P. K. S. Lam (2019). "Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment." <u>Ecotoxicology and Environmental Safety</u> 181: 26-33.
- Tsui, M. M. P., H. W. Leung, B. K. Y. Kwan, K. Y. Ng, N. Yamashita, S. Taniyasu, P. K. S. Lam et M. B. Murphy (2015). "Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan." <u>Journal of Hazardous Materials</u> 292: 180-7.
- Tsui, M. M. P., H. W. Leung, P. K. S. Lam et M. B. Murphy (2014a). "Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants." <u>Water Research</u> 53: 58-67.
- Tsui, M. M. P., H. W. Leung, T.-C. Wai, N. Yamashita, S. Taniyasu, W. Liu, P. K. S. Lam et M. B. Murphy (2014b). "Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries." <u>Water Research</u> 67: 55-65.
- Ura, K., T. Kai, S. Sakata, T. Iguchi et K. Arizono (2002). "Aquatic acute toxicity testing using the nematode *Caenorhabditis elegans*." Journal of Health Science **48**(6): 583-586.
- Vecchiato, M., S. Cremonese, E. Gregoris, E. Barbaro, A. Gambaro et C. Barbante (2016). "Fragrances as new contaminants in the Venice Iagoon." <u>Science of the Total Environment</u> **566-567**: 1362-1367.
- Vecchiato, M., E. Gregoris, E. Barbaro, C. Barbante, R. Piazza et A. Gambaro (2017). "Fragrances in the seawater of Terra Nova Bay, Antarctica." <u>Science of the Total Environment</u> **593-594**: 375-379.
- Veith, G. D., D. J. Call et L. T. Brooke (1983). "Structure toxicity relationships for the fathead minnow, *Pimephales promelas* – narcotic industrial-chemicals." <u>Canadian Journal of Fisheries and Aquatic</u> <u>Sciences</u> 40(6): 743-748.
- Vidal, L., A. Chisvert, A. Canals et A. Salvador (2010). "Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples." <u>Talanta</u> 81(1-2): 549-555.
- Vidal-Liñán, L., E. Villaverde-de-Sáa, R. Rodil, J. B. Quintana et R. Beiras (2018). "Bioaccumulation of UV filters in *Mytilus galloprovincialis* mussel." <u>Chemosphere</u> **190**: 267-271.
- Vila, M., M. Llompart, C. Garcia-Jares, V. Homem et T. Dagnac (2018). "Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand." Journal of Chromatography A **1564**: 59-68.
- Vila, M., M. Celeiro, J. P. Lamas, C. Garcia-Jares, T. Dagnac et M. Llompart (2017). "Simultaneous in-vial acetylation solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water." Journal of Hazardous Materials 323: 45-55.
- Vila, M., J. P. Lamas, C. Garcia-Jares, T. Dagnac et M. Llompart (2016). "Ultrasound-assisted emulsification microextraction followed by gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry for the analysis of UV filters in water." <u>Microchemical Journal</u> **124**: 530-539.
- Vione, D., P. Calza, F. Galli, D. Fabbri, V. Santoro et C. Medana (2015). "The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters." <u>Science of the Total Environment</u> 537: 58-68.
- Vione, D., R. Caringella, E. De Laurentiis, M. Pazzi et C. Minero (2013). "Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters." <u>Science of the Total Environment</u> 463-464: 243-251.
- Volpe, A., M. Pagano, G. Mascolo, P. Grenni et S. Rossetti (2017). "Biodegradation of UV-filters in marine sediments." <u>Science of the Total Environment</u> **575**: 448-457.
- Wang, C., M. Bavcon Kralj, B. Košmrlj, J. Yao, S. Košenina, O. V. Polyakova, V. B. Artaev, A. T. Lebedev et P. Trebše (2017). "Stability and removal of selected avobenzone's chlorination products." <u>Chemosphere</u> 182: 238-244.
- Wang, J. Y., L. M. Pan, S. G. Wu, L. P. Lu, Y. W. Xu, Y. Y. Zhu, M. Guo et S. L. Zhuang (2016). "Recent Advances on Endocrine Disrupting Effects of UV Filters." <u>International Journal of Environmental</u> <u>Research and Public Health</u> **13**(8).
- Wang, S. Y., X. H. Wang, J. Chen, R. J. Qu et Z. Y. Wang (2018). "Removal of the UV filter benzophenone-2 in aqueous solution by ozonation: kinetics, intermediates, pathways and toxicity." <u>Ozone-Science</u> <u>& Engineering</u> 40(2): 122-132.
- Wang, W. Q., H. X. Duan, Z. T. Pei, R. R. Xu, Z. T. Qin, G. C. Zhu et L. W. Sun (2018). "Evaluation by the Ames assay of the mutagenicity of UV filters using benzophenone and benzophenone-1." International Journal of Environmental Research and Public Health 15(9).
- Wang, Z., A. Deb, V. Srivastava, S. Iftekhar, I. Ambat et M. Mika Sillanpää (2019). "Investigation of textural properties and photocatalytic activity of PbO/TiO2and Sb2O3/TiO2 towards the photocatalytic degradation Benzophenone-3 UV filter." <u>Separation and Purification Technology</u> 228: 1-13.
- Waters, A. J., D. R. Sandhu, G. Lowe et J. Ferguson (2009). "Photocontact allergy to PABA in sunscreens: the need for continued vigilance." <u>Contact Dermatitis</u> **60**(3): 172-173.
- Weisbrod, C. J., P. Y. Kunz, A. K. Zenker et K. Fent (2007). "Effects of the UV filter benzophenone-2 on reproduction in fish." <u>Toxicology and Applied Pharmacology</u> **225**(3): 255-266.
- Westphal, J. K. Kümmerer et O. Olsson (2020). "Experimental and in silico assessment of fate and effects of the UV filter 2-phenylbenzimidazole 5-sulfonic acid and its phototransformation products in aquatic solutions " <u>Water Research</u> **171**: 1-10.
- Wick, A., O. Marincas, Z. Moldovan et T. A. Ternes (2011). "Sorption of biocides, triazine and phenylurea herbicides, and UV-filters onto secondary sludge." <u>Water Research</u> **45**(12): 3638-3652.
- Wick, A., G. Fink et T. A. Ternes (2010). "Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography-tandem mass spectrometry." <u>Journal of</u> <u>Chromatography A</u> **1217**(14): 2088-2103.
- Wijekoon, K. C., F. I. Hai, J. Kang, W. E. Price, W. Guo, H. H. Ngo et L. D. Nghiem (2013). "The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment." <u>Bioresource Technology</u> 144: 247-254.

- Wu, J.-W., H.-C. Chen et W.-H. Ding (2013). "Ultrasound-assisted dispersive liquid-liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples." Journal of Chromatography A 1302: 20-27.
- Wu, M.-h., D.-g. Xie, G. Xu, R. Sun, X.-y. Xia, W.-l. Liu et L. Tang (2017). "Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China." <u>Ecotoxicology and Environmental Safety</u> 141: 235-241.
- Xiao, M., D. B. Wei, L. P. Li, Q. Liu, H. M. Zhao et Y. G. Du (2014). "Formation pathways of brominated products from benzophenone-4 chlorination in the presence of bromide ions." <u>Journal of Environmental Sciences</u> **26**(12): 2387-2396.
- Xiao, M., D. Wei, J. Yin, G. Wei et Y. Du (2013). "Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection." <u>Water Research</u> **47**(16): 6223-6233.
- Xue, L. K., W. W. Ma, D. X. Zhang et X. Z. Du (2013). "Ultrasound-assisted liquid-liquid microextraction based on an ionic liquid for preconcentration and determination of UV filters in environmental water samples." <u>Analytical Methods</u> 5(16): 4213-4219.
- Yan, S., M. Liang, R. Chen, X. Hong et J. Zha (2020). "Reproductive toxicity and estrogen activity in Japanese medaka (*Oryzias latipes*) exposed to environmentally relevant concentrations of octocrylene." <u>Environmental Pollution</u> 261: 114104.
- Yang, H., G. Lu, Z. Yan, J. Liu, H. Dong, X. Bao, X. Zhang et Y. Sun (2020). "Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion." Journal of Hazardous Materials **391**: 122245.
- Yang, B., et G.-G. Ying (2013). "Oxidation of benzophenone-3 during water treatment with ferrate(VI)." Water Research **47**(7): 2458-2466.
- Yang, F., D. Wei, M. Xiao, X. Sun, Q. Guo, Y. Liu et Y. Du (2017). "The chlorination transformation characteristics of benzophenone-4 in the presence of iodide ions." <u>Journal of Environmental Sciences</u> **58**: 93-101.
- Yang, P., D. Kong, Y. Ji, J. Lu, X. Yin et Q. Zhou (2018). "Chlorination and chloramination of benzophenone-3 and benzophenone-4 UV filters." <u>Ecotoxicology and Environmental Safety</u> 163: 528-535.
- Ye, L., J. J. Liu, X. Yang, Y. Peng et L. Xu (2011). "Orthogonal array design for the optimization of ionic liquid-based dispersive liquid-liquid microextraction of benzophenone-type UV filters." <u>Journal of</u> <u>Separation Science</u> 34(6): 700-706.
- Yu, K., B. Li et T. Zhang (2012). "Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE preconcentration." <u>Analytica Chimica Acta</u> 738: 59-68.
- Zenker, A., H. Schmutz et K. Fent (2008). "Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples." Journal of Chromatography A **15**(1): 64-74.
- Zhang, H., et H. K. Lee (2012). "Simultaneous determination of ultraviolet filters in aqueous samples by plunger-in-needle solid-phase microextraction with graphene-based sol-gel coating as sorbent coupled with gas chromatography-mass spectrometry." <u>Analytica Chimica Acta</u> **742**: 67-73.

- Zhang, P. P., Z. G. Shi, Q. W. Yu et Y. Q. Feng (2011). "A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples." <u>Talanta</u> 83(5): 1711-1715.
- Zhang, Q., X. Ma, M. Dzakpasu et X. C. Wang (2017). "Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity." <u>Ecotoxicology and Environmental Safety</u> 142: 338-347.
- Zhang, Q. Y. Y., X. Y. Y. Ma, X. C. C. Wang et H. H. Ngo (2016). "Assessment of multiple hormone activities of a UV-filter (octocrylene) in zebrafish (Danio rerio)." <u>Chemosphere</u> **159**: 433-441.
- Zhang, S., X. Wang, H. Yang et Y. F. Xie (2016). "Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes." <u>Chemosphere</u> **154**: 521-527.
- Zhang, Y., et H. K. Lee (2013). "Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction." <u>Journal of Chromatography A</u> **4**(1): 56-61.
- Zhang, Y., et H. K. Lee (2012a). "Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples." <u>Analytica Chimica Acta</u> **750**: 120-126.
- Zhang, Y., et H. K. Lee (2012b). "Determination of ultraviolet filters in water samples by vortex-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry." Journal of Chromatography A **1249**: 25-31.
- Zhang, Z., Y. Guo, Q. Wang, B. Louis et F. Qi (2017). "Heterogeneous Fenton-like reactions with a novel hybrid Cu–Mn–O catalyst for the degradation of benzophenone-3 in aqueous media." <u>Comptes</u> <u>Rendus Chimie</u> **20**(1): 87-95.
- Zhang, Z., N. Ren, Y. F. Li, T. Kunisue, D. Gao et K. Kannan (2011). "Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge." <u>Environmental Science & Technology</u> 45(9): 3909-3916.
- Zhao, H., D. Wei, M. Li et Y. Du (2013). "Substituent contribution to the genotoxicity of benzophenone-type UV filters." <u>Ecotoxicology and Environmental Safety</u> **95**: 241-246.
- Zhong, X., C. A. Downs, X. Che, Z. Zhang, Y. Li, B. Liu, Q. Li, Y. Li et H. Gao (2019). "The toxicological effects of oxybenzone, an active ingredient in suncream personal care products, on prokaryotic alga *Arthrospira* sp. and eukaryotic alga *Chlorella* sp." <u>Aquatic Toxicology</u> **216**: 105295.
- Zhou, L., Y. Ji, C. Zeng, Y. Zhang, Z. Wang et X. Yang (2013). "Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter." <u>Water Research</u> 47(1): 153-162.
- Zhuang, R. S., R. Zabar, G. Grbović, D. Dolenc, J. Yao, T. Tisler et P. Trebse (2013). "Stability and toxicity of selected chlorinated benzophenone-type uv filters in waters." <u>Acta Chimica Slovenica</u> **60**(4): 826-832.
- Ziarrusta, H., L. Mijangos, R. Montes, R. Rodil, E. Anakabe, U. Izagirre, A. Prieto, N. Etxebarria, M. Olivares et O. Zuloaga (2018a). "Study of bioconcentration of oxybenzone in gilt-head bream and characterization of its by-products." <u>Chemosphere</u> **208**: 399-407.

- Ziarrusta, H., L. Mijangos, S. Picart-Armada, M. Irazola, A. Perera-Lluna, A. Usobiaga, A. Prieto, N. Etxebarria, M. Olivares et O. Zuloaga (2018b). "Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone." <u>Chemosphere</u> **211**: 624-631.
- Zucchi, S., N. Bluthgen, A. leronimo et K. Fent (2011a). "The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (*Danio rerio*) eleuthero-embryos and adult males." <u>Toxicology and Applied Pharmacology</u> **250**(2): 137-146.
- Zucchi, S., D. M. Oggier et K. Fent (2011b). "Global gene expression profile induced by the UV-filter 2-ethylhexyl-4-trimethoxycinnamate (EHMC) in zebrafish (*Danio rerio*)." <u>Environmental Pollution</u> **159**(10): 3086-3096.
- Zúñiga-Benítez, H., et G. A. Peñuela (2018). "Application of solar photo-Fenton for benzophenone-type UV filters removal." Journal of Environmental Management **217**: 929-938.
- Zúñiga-Benítez, H., R. Sanchez-Monsalve et G. A. Penuela (2018). "Benzophenone-3 removal using heterogeneous photocatalysis at pilot scale." <u>Water Air and Soil Pollution</u> **229**(10).
- Zúñiga-Benítez, H., C. Aristizábal-Ciro et G. A. Peñuela (2016). "Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical Benzophenone-3: Parameters optimization and by-products identification." Journal of Environmental Management **167**: 246-258.

Propriétés	Benzophénone (BP)	Benzophénone-1 (BP-1)	Benzophénone-2 (BP-2)	Benzophénone-3 (BP-3)
Numéro CAS	119-61-9	131-56-6	131-55-5	131-57-7
Formule chimique	C ₁₃ H ₁₀ O	C ₁₃ H ₁₀ O ₃	C ₁₃ H ₁₀ O ₅	C14H12O3
Poids moléculaire (g/mol)	182,22	214,216	246,22	228,243
log K _{oe}	3,18	2,96	2,78	3,79
log K _{oc}	2,63 – 2,71	3,28	3,81	2,98
Pression de vapeur (mm Hg)	1,93E-03	1,4E-07	1,6E-11	6,62E-06
Solubilité (mg/l)	137	240	8 821	3,7
Structure moléculaire		ОН ОН	но он он он	OH O CH ₃
Synonymes	- Benzoylbenzène - Diphénylméthanone	- 2,4-Dihydroxy benzophénone (DHB) - 4-Benzoyl resorcinol	- 2,2',4,4'-Hydroxy benzophénone	 2-hydroxy 4-méthoxy benzophénone Oxybenzone

Tableau 1 – Propriétés physicochimiques des dérivés de la benzophénone

Propriétés	Benzophénone-4 (BP-4)	Benzophénone-6 (BP-6)	Benzophénone-7 (BP-7)	Benzophénone-8 (BP-8)
Numéro CAS	4065-45-6	131-54-4	85-19-8	131-53-3
Formule chimique	C14H12O6S	C15H14O5	C ₁₃ H ₉ ClO ₂	C14H12O4
Poids moléculaire (g/mol)	308,30	274,27	232,66	244,24
log K _{oe}	0,37	3,90	4,09	3,93
log K _{oc}	1,83	3,17	3,46	3,32
Pression de vapeur (mm Hg)	1,3E-11	7,37E-09	2,13E-05	1,94E-07
Solubilité (mg/l)	2,5E+05	30,83	36	52,73
Structure moléculaire				НО О
Synonymes	- Sulisobenzone	- 2,2- dihydroxy-4,4- dimethoxybenzophenone (DHDMB)	- 5-Chloro-2- hydroxybenzophenone	- 2,2'-dihydroxy-4-méthoxy benzophénone (DHMB) - Dioxybenzone

Propriétés	Benzophénone-9 (BP-9)	Benzophénone-10 (BP-10)	Benzophénone-12 (BP-12)
Numéro CAS	76656-36-5	1641-17-4	1843-05-6
Formule chimique	C15H12Na2O11S2	C15H14O3	C ₂₁ H ₂₆ O ₃
Poids moléculaire (g/mol)	478,36	242,09	326,43
log K _{oe}		4,07	6,96
log K₀c		3,31	4,96
Pression de vapeur (mm Hg)		5,36E-07	6,92E-08
Solubilité (mg/l)		33,03	0,037
Structure moléculaire	$Na^{+}o^{-}o^{-}o^{-}o^{-}o^{-}o^{-}o^{-}o^{-$		
Synonymes		- 2-hydroxy-4-méthoxy -4'- méthylbenzophénone - Mexenone	- 2-hydroxy-4-octyloxy benzophénone (UV-531) - Octabenzone

Propriétés	2-hydroxybenzophénone (2HBP)	3-hydroxybenzophénone (3HBP)	4-hydroxybenzophénone (4HBP)	2,3,4'-trihydroxy benzophénone (THB)
Numéro CAS	117-99-7	13020-57-0	1137-42-4	1143-72-2
Formule chimique	C ₁₃ H ₁₀ O ₂	C ₁₃ H ₁₀ O ₂	C ₁₃ H ₁₀ O ₂	C13H10O4
Poids moléculaire (g/mol)	198,22	198,22	198,22	230,216
log K _{oe}	3,44	2,67	2,67	2,91
log K _{oc}	3,25	3,24	3,24	3,687
Pression de vapeur (mm Hg)	4,76E-05	1E-05	5,5E-06	7,5E-09
Solubilité (mg/l)	167,5	896,5	405,8	381,1
Structure moléculaire	о — ОН	ОН	O O OH	
Synonymes				- Jaune d'alizarine R - Acide p-nitrobenzène- azosalicylique

Sources : HSDB, 2020, et ChemSpider, 2020.

Propriétés	4,4'-Dihydroxy benzophénone (4DHB)	4-phényl benzophénone (4PB)	2,2'- dihydroxybenzophénone (2,2'-DHBP)	2,4,4'- trihydroxybenzophénone (2,4,4'-THBP)
Numéro CAS	611-99-4	2128-93-0	835-11-0	1470-79-7
Formule chimique	C ₁₃ H ₁₀ O ₃	C ₁₉ H ₁₄ O	C ₁₃ H ₁₀ O ₃	C ₁₃ H ₁₀ O ₄
Poids moléculaire (g/mol)	214,22	258,31	214,22	230,22
log K _{oe}	2,19	4,91	3,74	2,48
log K _{oc}	3,45	4,61	3,47	3,67
Pression de vapeur (mm Hg)	2,46E-08	5,45E-07	1,52E-05	7,5E-09
Solubilité (mg/l)	1 905	1,36	89,69	873,4
Structure moléculaire	но	°	O O H O H	но ф о он
Synonymes				

Propriétés	Diéthylamino hydroxybenzoyl hexyl benzoate (DHHB)	Benzhydrol (BH)
Numéro CAS	302776-68-7	91-01-0
Formule chimique	C ₂₄ H ₃₁ NO ₄	C ₁₃ H ₁₂ O
Poids moléculaire (g/mol)	397,51	184,23
log K _{oe}	6,54	2,71
log K _{oc}	4,5	2,76
Pression de vapeur (mm Hg)	2,5E-11	5,91E-05
Solubilité (mg/l)	0,0082	891,1
Structure moléculaire		
Synonymes	- Uvinul A+	

Sources : HSDB, 2020, et ChemSpider, 2020.

Propriétés	Acide para- aminobenzoïque (PABA)	Ethyl PABA (Et-PABA)	Octyl diméthyl PABA (OD-PABA)
Numéro CAS	150-13-0	94-09-7	21245-02-3
Formule chimique	C7H7NO2	C ₉ H ₁₁ NO ₂	C17H27NO2
Poids moléculaire (g/mol)	137,13	165,19	277,41
log K _{oe}	0,83	1,86	5,77
log K _{oc}	1,30 – 2,50	2,40	3,34
Pression de vapeur (mm Hg)	4,5E-06	2,6E-04	5,1E-04
Solubilité (mg/l)	5 390	1 310	0,54
Structure moléculaire	H ₂ N OH	H ₃ N CH ₃	
Synonymes		- Benzocaïne	- 2-Éthylhexyl-p- diméthylaminobenzoate - Padimate O

Tableau 2 – Propriétés physicochimiques des dérivés de l'acide p-aminobenzoïque

Propriétés	3-(4-méthylbenzylidène) camphor (4-MBC)	3-benzylidène camphor (3-BC)
Numéro CAS	36861-47-9	15087-24-8
Formule chimique	C ₁₈ H ₂₂ O	C17H20O
Poids moléculaire (g/mol)	254,37	240,34
log K _{oe}	4,95	5,37
log K _{oc}	4,087	3,877
Pression de vapeur (mm Hg)	1,52E-05	3,8E-05
Solubilité (mg/l)	0,20	0,69
Structure moléculaire	H ₃ C	°
Synonymes	- Enzacamène - Parsol 5000	

Tableau 3 – Propriétés physicochimiques des dérivés du camphre

Propriétés	2-éthylhexyl salicylate (EHS)	Benzyl salicylate (BS)	Homosolate (HS)	Trolamine salicylate (TEAS)
Numéro CAS	118-60-5	118-58-1	118-56-9	2174-16-5
Formule chimique	C15H22O3	C14H12O3	C ₁₆ H ₂₂ O ₃	C13H21NO6
Poids moléculaire (g/mol)	250,34	228,25	262,349	287,31
log K _{oe}	5,97	4,31	6,16	
log K _{oc}	3,93	3,71	4,03	
Pression de vapeur (mm Hg)	3,17E-06	1,8E-05	2,79E-06	
Solubilité (mg/l)	0,50	24,59	0,42	
Structure moléculaire	H ₃ C	ОН	H.O.O.O	
Synonymes	- Octyl salicylate		- Métyl salicylate - 2-hydroxybenzoate de 3,3,5- triméthylcyclohexyles	

Tableau 4 – Propriétés physicochimiques des dérivés du salicylate

Propriétés	Isoamyl 4-méthoxycinnamate (IMC)	2-éthylhexyl 4-méthoxycinnamate (EHMC)
Numéro CAS	71617-10-2	5466-77-3
Formule chimique	C15H20O3	C ₁₈ H ₂₆ O ₃
Poids moléculaire (g/mol)	248,32	290,40
log K _{oe}	4,33	6,1
log K _{oc}	3,25	3,93
Pression de vapeur (mm Hg)	1,88E-04	2,3E-05
Solubilité (mg/l)	4,9	0,22 – 0,75
Structure moléculaire	H ₃ C	
Synonymes	- Amiloxate	- Octinoxate - Octyl méthoxycinnamate

Tableau 5 – Propriétés physicochimiques des dérivés du cinnamate

Propriétés	Diethylhexyl butamido triazone (DBT)	Octyl triazone (OT)
Numéro CAS	154702-15-5	88122-99-0
Formule chimique	C44H59N7O5	C48H66N6O6
Poids moléculaire (g/mol)	765,983	823,07
log K _{oe}	11,89	8,1
log K _{oc}		
Pression de vapeur (mm Hg)		
Solubilité (mg/l)		
Structure moléculaire		
Synonymes		- Ethylhexyl triazone

 Tableau 6 – Propriétés physicochimiques des dérivés de la triazine

Tableau 7 –	Propriétés	physicochimiq	ues des de	érivés du cr	ylène
-------------	------------	---------------	------------	--------------	-------

Propriétés	Octocrylène (OC)	Étocrylène (Eto)
Numéro CAS	6197-30-4	5232-99-5
Formule chimique	C ₂₄ H ₂₇ NO ₂	C ₁₈ H ₁₅ NO ₂
Poids moléculaire (g/mol)	361,4	277,323
log K _{oe}	7,53	4,01
log K _{oc}	6,88	4,055
Pression de vapeur (mm Hg)	3,2E-09	3,6E-07
Solubilité (mg/l)	1,3	3,403
Structure moléculaire	H ₃ C N	N C C
Synonymes	- Parsol 340	- UV Absorber-2 - Uvinul N 35

Propriétés	Acide 2-phénylbenzimidazole-5- sulfonique (PBSA)	Acide phényldibenzimidazole tétrasulfonique (PDT)
Numéro CAS	27503-81-7	170864-82-1
Formule chimique	C13H10N2O3S	C ₂₀ H ₁₄ N ₄ O ₁₂ S ₄
Poids moléculaire (g/mol)	274,3	630,6
log K _{oe}	1,50	
log K _{oc}	2,46	
Pression de vapeur (mm Hg)	7,32E-15	
Solubilité (mg/l)	12	
Structure moléculaire		$ \begin{array}{c} \mathbf{N} \mathbf{u}^{*} \\ \mathbf{v} = \mathbf{s} = \mathbf{o} \\ \mathbf{v} = \mathbf{s} = \mathbf{o} \\ \mathbf{v} + \mathbf{h} \\ \mathbf{h} \\ \mathbf{v} + \mathbf{h} \\ \mathbf{h} \\$
Synonymes	- Ensulizole	

 Tableau 8 – Propriétés physicochimiques des dérivés du benzimidazole

Propriétés	Butyl-méthoxy dibenzoylméthane (BMDM)
Numéro CAS	70356-09-1
Formule chimique	C ₂₀ H ₂₂ O ₃
Poids moléculaire (g/mol)	310,39
log K _{oe}	4,51
log K _{oc}	3,30
Pression de vapeur (mm Hg)	1,4E-06
Solubilité (mg/l)	2,2
Structure moléculaire	
Synonymes	- Avobenzone

Tableau 9 – Propriétés physicochimiques des dérivés du dibenzoylméthane

Tableau 10 - Propriétés physicochimiques du menthyl anthranilate

Propriétés	Menthyl anthranilate (MA)
Numéro CAS	134-09-8
Formule chimique	C ₁₇ H ₂₅ NO ₂
Poids moléculaire (g/mol)	275,39
log K _{oe}	6,28
log K _{oc}	3,58
Pression de vapeur (mm Hg)	3,75E-06
Solubilité (mg/l)	1,85
Structure moléculaire	
Synonymes	

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophér	none (BP)	
Eau de mer	Costa da Caparica, Portugal	≤ 400	Almeida et collab., 2013
Eau de surface	Fleuve Itajaí-Açu, Brésil	≤ 1	Kirschner et collab., 2017
Eau de surface	Fleuve São Francisco, Brésil	≤ 1	Kirschner et collab., 2017
Eau de surface	Chine	≤ 580	Li, Ma et collab., 2013
Eau de surface	Fleuve Huangpu, Chine	60,8 – 261	Wu et collab., 2017
Eau de surface	Rivière Han Jiang, Chine	≤ 1 700	Ye et collab., 2011
Eau de surface	Fleuve Chang Jiang, Chine	≤ 800	Ye et collab., 2011
	Lac de l'Est, Chine	≤ 600	Ye et collab., 2011
Eau de sullace		≤ 500	Zhang, Shi et collab., 2011
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 5	Jeon et collab., 2006
Eau de surface	Préfecture de Saitama, Japon	1 – 82	Kameda et collab., 2011
	Fleuve Tama, Japon	≤ 50	Okanouchi et collab., 2008
		23	Kawaguchi et collab., 2008
Eau de surface	Singapour	≤ 200	Zhang et Lee, 2012a
Eau de surface	Réservoir de Pandan, Singapour	≤ 8	Zhang et Lee, 2012b

Tableau 11 – Concentrations en filtres UV mesurées dans l'eau de surface, l'eau de mer et l'eau interstitielle

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzoph	énone (BP)	
Eau de surface		≤ 0,5	Ge et Lee, 2012
Lau de sullace		≤ 8	Zhang et Lee, 2012b
	Benzophén	one-1 (BP-1)	
Eau de mer	Baie Erebus, Antarctique	≤ 0,8 – 10,3	Emnet et collab., 2015
Eau de mer	Arctique	2,5 – 5	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	0,58 – 27,27	Tsui et collab., 2019
Eau de mer	Shenzhen, Chine	≤ 80,19 – 174,98	Li, Law et collab., 2018
	Hong Kong, Chine	≤ 11,15 – 17,96	Li, Sang et collab., 2017
Eau de mei		82 – 135	Tsui, Leung et collab., 2014b
Eau de mer	Shantou, Chine	22 – 58	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,11	Tsui, Leung et collab., 2014b
Eau de mer	Espagne	≤ 6,1	Vila et collab., 2017
Eau de mer	Plage de Los Narejos, Espagne	280 ± 30	Tarazona et collab., 2010
Eau de mer	Plage de Poniente, Espagne	≤ 32	Tarazona et collab., 2010
Eau de mer	Plage de Postiguet, Espagne	≤ 32	Tarazona et collab., 2010
Eau de mer	New York, États-Unis	≤ 0,11 – 74	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	100 – 117	Tsui, Leung et collab., 2014b
Eau de mer	Tokyo, Japon	52 – 95	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophéno	ne-1 (BP-1)	
Eau de mer	Mer Méditerranée	≤ 1	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 1	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 1	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 1 – 2,5	Orlikowska et collab., 2015
Eau de mer	Costa da Caparica, Portugal	≤ 400	Almeida et collab., 2013
Eau de mer	Kenting, Taïwan	48,7 – 50,2	He, Tsui et collab., 2019b
Eau de surface	Fleuve Rhin, Allemagne	0,9 – 29	Wick et collab., 2010
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	47	Jeon et collab., 2006
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 5	Jeon et collab., 2006
Eau de surface	Rivière Dongjiang, Chine	≤ 3,7	Li, Sang et collab., 2017
Eau de surface	Fleuve Huangpu, Chine	≤ 0,1 − 12,6	Wu et collab., 2017
Eau de surface	Rivière Han Jiang, Chine	≤ 6 400	Ye et collab., 2011
Eau de surface	Fleuve Chang Jiang, Chine	≤ 5 700	Ye et collab., 2011
		≤ 6 000	Ye et collab., 2011
Eau de sunace	Lac de l'Est, Chine	≤ 400	Zhang, Shi et collab., 2011
Eau de surface	Rivière Ripoll, Espagne	14,5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Riu Sec, Espagne	51,8	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-1 (BP-1)	
	Fanagena	52	Negreira et collab., 2009
Eau de surface	Espagne	≤ 6,1	Vila et collab., 2017
Fou do surfoco		31,2 – 48,2	Molins-Delgado, Távora et collab., 2017
Lau de sullace	Fieuve Desos, Espagne	≤ 20	Serra-Roig et collab., 2016
Eau de surface	Ruisseau de Rubi, Espagne	≤ 3,3 – 28,3	Molins-Delgado, Távora et collab., 2017
Equido surfaço	Elouvo Llobrogat, Espagno	≤ 3,3 – 5,3	Molins-Delgado, Távora et collab., 2017
Lau de sullace	Fieuve Liobiegal, Espagne	≤ 1 – 7,54	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Rivière Cardaner, Espagne	≤ 3,3	Molins-Delgado, Távora et collab., 2017
Eau de surface	Lac de Bracciano, Italie	≤ 3 – 7,1	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	2,5 – 24	Piovesana et collab., 2017
Eau de surface	Fleuve Tama, Japon	≤ 5	Kawaguchi et collab., 2008
Eau de surface	Mer Baltique et son bassin versant	1,3 – 2,8	Fisch et collab., 2017
Fou do ourfoco	Rivière Taf, Royaume-Uni	≤ 300 – 17 000	Kasprzyk-Hordern et collab., 2009, 2008b
Eau de surface		6 000 – 9 000	Kasprzyk-Hordern et collab., 2008a
Eau de surface	Rivière Ely, Royaume-Uni	≤ 300 – 13 000	Kasprzyk-Hordern et collab., 2009, 2008b
Eau de surface	Rivière Singapour, Singapour	≤ 20	Zhang et Lee, 2012b
Eau de surface	Rivière Singapour, Singapour	≤ 1	Ge et Lee, 2012
Eau de surface	Réservoir de Pandan, Singapour	≤ 20	Zhang et Lee, 2012b
Eau de surface	Singapour	1 – 18,2	Mao, You et collab., 2018

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-1 (BP-1)	
Eau de surface	Rivière Lao-Jie, Taïwan	≤ 0,5 – 23,8	Chung et collab., 2015
Eau de surface	Tainan, Taïwan	≤ 1 − 6,1	Wu et collab., 2013
Eau de surface	Taichung, Taïwan	1,8	Ho et Ding, 2012
Eau de surface	Bangkok, Thaïlande	127 – 166	Tsui, Leung et collab., 2014b
Eau interstitielle	Singapour	≤ ld – 22,5	Mao, You et collab., 2018
Glace	Baie Erebus, Antarctique	≤ 0,8	Emnet et collab., 2015
	Benzophén	one-2 (BP-2)	
Eau de mer	Hong Kong, Chine	≤ 8,13	Li, Sang et collab., 2017
Eau de mer	Mer Méditerranée	≤ 1,5	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 1,5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 1,5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 1,5	Orlikowska et collab., 2015
Eau de surface	Fleuve Rhin, Allemagne	≤ 0,5 – 6,7	Wick et collab., 2010
Eau de surface	Fleuve Huangpu, Chine	≤ 0,1 – 34,7	Wu et collab., 2017
Eau de surface	Fleuve Llobregat, Espagne	≤ 1,2	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Fleuve Besos, Espagne	≤ 13	Serra-Roig et collab., 2016
Eau de surface	Lac de Bracciano, Italie	≤ 1 − 4,7	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	≤ 1 – 5,6	Piovesana et collab., 2017
Eau de surface	Mer Baltique et son bassin versant	≤ 1,5	Fisch et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence		
	Benzophéno	one-2 (BP-2)			
		≤ 500 – 285 000	Kasprzyk-Hordern et collab., 2008b		
Eau de surface	Rivière Taf, Royaume-Uni	≤ 600 – 4 000	Kasprzyk-Hordern et collab., 2008a		
		≤ 500 – 1 000	Kasprzyk-Hordern et collab., 2009		
Eau de surface	Rivière Ely, Royaume-Uni	≤ 500 – 26 000	Kasprzyk-Hordern et collab., 2009, 2008b		
Eau de surface	Singapour	0,8 – 109,2	Mao, You et collab., 2018		
Eau interstitielle	Singapour	4,7 – 27,5	Mao, You et collab., 2018		
	Benzophénone-3 (BP-3)				
Eau de mer	Baie Erebus, Antarctique	≤ 2,6 – 88,4	Emnet et collab., 2015		
Eau de mer	Arctique	17 – 33	Tsui, Leung et collab., 2014b		
Eau de mer	Lac Bay, Bonaire	≤ 10 – 1 540	Schaap et Slijkerman, 2018		
Eau de mer	Mer de Chine méridionale	2,21 – 36,65	Tsui et collab., 2019		
Eau de mer	Shenzhen, Chine	≤ 3,9 – 133,36	Li, Law et collab., 2018		
	Hong Kong, Chino	13,1 – 82,4	Li, Sang et collab., 2017		
Eau de mei	Hong Kong, Chine	39 – 5 429	Tsui, Leung et collab., 2014b		
Eau de mer	Shantou, Chine	55 – 188	Tsui, Leung et collab., 2014b		
Eau de mer	Chaozhou, Chine	37 – 49	Tsui, Leung et collab., 2014b		
Eau de mer	Plage de Coira, Espagne	68,6	Paredes et collab., 2014		
Eau de mer	Plage de Toralla, Espagne	21,7	Paredes et collab., 2014		
Eau de mer	Plage de Los Narejos, Espagne	1 440 ± 130	Tarazona et collab., 2010		

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-3 (BP-3)	
Eau de mer	Plage de Poniente, Espagne	1 340 ± 60	Tarazona et collab., 2010
Fou do mor	Diago do Dostiguisti Conogno	3 300 ± 200	Tarazona et collab., 2010
Eau de mei	Flage de Fostiguel, Espagne	254	Román et collab., 2011
Eau de mer	Plage de la Malva-Rosa, Espagne	≤ 110	Vidal et collab., 2010
Eau de mer	Plage de Bellreguard, Espagne	≤ 110	Vidal et collab., 2010
Eau de mer	Plage de Santa Pola, Espagne	≤ 110	Vidal et collab., 2010
Eau de mer	Plage de Puçol, Espagne	148 ± 20	Chisvert et collab., 2017
Fou do mor	Plage de Patacona, Espagne	405 ± 9	Chisvert et collab., 2017
Eau de mei		603 ± 50	Benedé et collab., 2016
Eau de mer	Plage de Santa Cristina, Espagne	≤ 1,5	Rodil, Quintana et collab., 2008
Eau de mer	Plage de Santa Maria del Mar, Espagne	0,07 ± 0,001	Pintado-Herrera et collab., 2013
Eau de mer	Rio San Pedro, Espagne	60 ± 8	Pintado-Herrera et collab., 2014
Eau de mer	Majorque, Espagne	≤ 620	Suárez et collab., 2016
Eau de mer	Ville de Ses Salines, Majorque, Espagne	≤ 20 – 36,3	Tovar-Sanchez et collab., 2013
Fou do mor	Plage de Santa Ponsa, Majorque, Espagne	40,4 - 314,8	Tovar-Sanchez et collab., 2013
Eau de mei		116 ± 1	Benedé et collab., 2014b
Eau de mer		92 ± 6	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de la Malva-Rosa, Espagne	200 ± 2	Benedé et collab., 2014a

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-3 (BP-3)	
Eau de mer (fraction totale)	Plage de la Malva-Rosa, Espagne	200 ± 2	Benedé et collab., 2014a
Eau de mer	Plage de Pinedo, Espagne	84 ± 6	Benedé et collab., 2014b
Eau de mer (fraction particulaire)		≤ 99	Benedé et collab., 2014a
Eau de mer (fraction totale)		≤ 99	Benedé et collab., 2014a
Eau de mer (fraction particulaire)		130 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)	Plage de Palmira, Majorque, Espagne	308 ± 16	Benedé et collab., 2014a
Eau de mer		95,8 – 245,6	Tovar-Sanchez et collab., 2013
Eau de mer	New York, États-Unis	23 – 178	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	227 – 601	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 0,5 – 575	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 0,5 – 138	Bratkovics et collab., 2015
Fou do mor	Folly Beach, Caroline du Sud, États-Unis	< 0,5 – 2 203	Bratkovics et collab., 2015
Eau de mei		10 – 2 013	Bratkovics et Sapozhnikova, 2011
Eau de mer	Chesapeake Bay, Maryland, États-Unis	31,1 – 113,7	He et collab., 2019a
Eau de mer	Maunalua Bay, Oahu, Hawaii, États-Unis	≤ ld – 100	Downs et collab., 2016
Eau de mer	Kapalua Bay, Maui, Hawaii, États-Unis	19 200	Downs et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-3 (BP-3)	
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	8,8 – 142,7	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	0,1 – 7,5	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	0,1 – 48,1	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 1,4 – 27,1	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	32,7 – 979,8	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	12,7 – 2 675,7	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	54,2 – 3 316,7	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 1,4 – 158	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 1,4 – 182,6	Sánchez Rodríguez et collab., 2015
Eau de mer	Mer Ionienne, Grèce	≤ 1 170	Lambropoulou et collab., 2002
Eau de mer	Grèce	6,5 – 8,2	Giokas et collab., 2005
Eau de mer	Épire, Grèce	1,8 ± 0,4	Giokas et collab., 2004
Eau de mer	Trunk Bay, îles Vierges américaines	1 943 – 4 643	Bargar et collab., 2015
Eau de mer	Trunk Bay, îles Vierges américaines	580 000 – 1 395 000	Downs et collab., 2016
Eau de mer	Hawksnest Bay, îles Vierges américaines	75 000 – 95 000	Downs et collab., 2016
Eau de mer	Plage Foce, Italie	7 – 13	Magi et collab., 2012
Eau de mer	Okinawa, Japon	≤ 3 – 1 258	Tashiro et Kameda, 2013
Eau de mer	Tokyo, Japon	24 – 86	Tsui, Leung et collab., 2014b
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophér	oone-3 (BP-3)	
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Oslofjord, Norvège	5,4 – 19,5	Langford et Thomas, 2008
Eau de mer	Plage de Huk, Norvège	≤ 5 – 165,5	Langford et Thomas, 2008
Eau de mer	Kalvøya, Norvège	≤ 5 – 24	Langford et Thomas, 2008
Eau de mer	Sandvika, Norvège	≤ 5 – 439,9	Langford et Thomas, 2008
Eau de mer	Ostøya, Norvège	21,6 - 37	Langford et Thomas, 2008
Eau de mer	Océan Pacifique	5 – 6	Goksoyr et collab., 2009
Eau de mer	Lac Jellyfish, Palaos	≤ 1 − 10,2	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 1 – 12,1	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ I – 18,5	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤	Bell et collab., 2017
Eau de mer	Costa da Caparica, Portugal	≤ 400	Almeida et collab., 2013
Eau de mer	Kenting, Taïwan	135 – 361,4	He et collab., 2019b
Eau de surface	Fleuve Rhin, Allemagne	≤ 5 – 47	Wick et collab., 2010
Eau de surface	Étang Bagger, Allemagne	17 – 55	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 11	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	30 ± 3	Rodil et Moeder, 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophéno	one-3 (BP-3)	
		40 – 83	Moeder et collab., 2010
Eau de surface	Lac de Cospuden, Allemagne	≤ 11 – 27	Rodil et Moeder, 2008b
		40 ± 3	Rodil et collab., 2009b
Eau de surface	Baie de Port Phillip, Australie	4,3 – 7,1	Allinson et collab., 2018
Eau de surface	Araraquara, Brésil	≤ 23,5	da Silva et collab., 2015
Equido ourfoco	Chine	58 – 3 350	Ma, Wang et collab., 2017
Eau de sullace		≤ 1 030	Li, Ma et collab., 2013
Eau de surface	Lac, Xiamen, Chine	1 620	Mei et Huang, 2017
Eau de surface	Rivière, Xiamen, Chine	1 700	Mei et Huang, 2017
Eau de surface	Rivière Dongjiang, Chine	≤ 2,1 – 23,2	Li, Sang et collab., 2017
Eau de surface	Fleuve Huangpu, Chine	≤ 0,1 – 27,4	Wu et collab., 2017
Eau de surface	Fleuve Jaune, Chine	1 470 – 2 320	Xue et collab., 2013
Eau de surface	Guangzhou, Chine	≤ 0,2 – 59	Liu, Liu et collab., 2010
Eau de surface	Rivière Han Jiang, Chine	≤ 5 300	Ye et collab., 2011
Eau de surface	Fleuve Chang Jiang, Chine	≤ 4 700	Ye et collab., 2011
Fau do surface	Lac de l'Est, Chine	≤ 5 300	Ye et collab., 2011
Eau de Sullace		≤ 800	Zhang, Shi et collab., 2011
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophéno	ne-3 (BP-3)	
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 5	Jeon et collab., 2006
Eau de surface	Corée du Sud	1,2-2,7	Kim et collab., 2007
Eau de surface	Espagne	52	Negreira et collab., 2009
		20,9 – 52,5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Fleuve Besòs, Espagne	24,9 – 58	Serra-Roig et collab., 2016
		20,9 – 52,2	Martins Ferreira Miranda de Távora (2014)
Eau de surface	Rivière Ripoll, Espagne	15,9	Molins-Delgado, Távora et collab., 2017
Eau de surface	Riu Sec, Espagne	43,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Ruisseau de Rubi, Espagne	≤ 2,3 – 38,5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Cardaner, Espagne	4,4 – 5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Mijares, Espagne	144 ± 10	Chisvert et collab., 2017
Eau de surface	Rivière Mero, Espagne	≤ 1,5 – 27	Rodil, Quintana et collab., 2008
Eau de surface	Fleuve Júcar, Espagne	≤ 110	Vidal et collab., 2010
	Fleuve Llobregat, Espagne	≤ 2,3	Molins-Delgado, Távora et collab., 2017
Eau de surface		28	Pedrouzo et collab., 2010
		≤ 0,7 – 37,8	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Fleuve Guadalete, Espagne	66 ± 1	Pintado-Herrera et collab., 2014

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophéno	one-3 (BP-3)	
		≤ 110	Vidal et collab., 2010
		124 ± 10	Chisvert et collab., 2017
Eau de surface	rieuve Tulia, Espaglie	428	Román et collab., 2011
		≤ 148	Benedé et collab., 2016
Eau de surface	Fleuve Èbre, Espagne	6	Pedrouzo et collab., 2010
Eau de surface	Fleuve Ter, Espagne	8	Pedrouzo et collab., 2010
Eau de surface	Ames, Iowa, États-Unis	≤ 17	Trujillo-Rodriguez et collab., 2018
Eau de surface	Lacs Fort Gibson, Grand, Kaw, Keystone, Oologah et Skiatook, Oklahoma, États-Unis	38,99 – 1 826,96	Layton, 2015
Eau de surface	Lac de Bracciano, Italie	7,4 – 30,6	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	6,4 – 58	Piovesana et collab., 2017
Eau de surface	Santa Margherita, Italie	≤ 25 – 33	Nguyen et collab., 2011
Eau de surface	San Fruttuoso, Italie	88 – 118	Nguyen et collab., 2011
Eau de surface	Camogli, Italie	≤ 25	Nguyen et collab., 2011
Eau de surface	Rivière Sturla, Italie	3 – 69	Magi et collab., 2012
Eau de surface	Rivière Olona, Italie	4,1	Castiglioni et collab., 2018
Eau de surface	Rivière Seveso, Italie	13,7	Castiglioni et collab., 2018
Eau de surface	Rivière Lambro, Italie	2,8 – 9,1	Castiglioni et collab., 2018
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3 – 9	Tashiro et Kameda, 2013

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophér	oone-3 (BP-3)	
Equido surfaço	P 1	85	Okanouchi et collab., 2008
Lau de sullace		14	Kawaguchi et collab., 2008
Eau de surface	Préfecture de Saitama, Japon	≤ 1 – 41	Kameda et collab., 2011
Eau de surface	Mer Baltique et son bassin versant	6,7 – 11,4	Fisch et collab., 2017
Eau de surface	République tchèque	12 – 67	Grabicova et collab., 2013
Eau de surface	Rivière Taf, Royaume-Uni	≤ 15 000 – 44 000	Kasprzyk-Hordern et collab., 2009, 2008b
Eau de surface	Rivière Taf, Royaume-Uni	28 000 – 37 000	Kasprzyk-Hordern et collab., 2009, 2008b
Eau de surface	Rivière Ely, Royaume-Uni	≤ 15 000	Kasprzyk-Hordern et collab., 2008b
Founda confere	Singapour	2,3 – 122,6	Mao et collab., 2018b
Lau de sullace		≤ 500	Zhang et Lee, 2012b
	Rivière Singapour, Singapour	≤ 1	Ge et Lee, 2012
Eau de sullace		≤ 17	Zhang et Lee, 2012a
Eau de surface	Réservoir de Pandan, Singapour	≤ 17	Zhang et Lee, 2012a
Eau de surface	Rivière Nadiža-Soča, Slovénie	≤ 54	Cuderman et Heath, 2007
Eau de surface	Rivière Kolpa, Slovénie	114	Cuderman et Heath, 2007
Eau de surface	Lac de Rakitna, Slovénie	85	Cuderman et Heath, 2007
Eau de surface	Lac de Bohinj, Slovénie	32	Cuderman et Heath, 2007
Eau de surface	Lac Šobec, Slovénie	58	Cuderman et Heath, 2007

Matrice	Localisation	Concentration (ng/l)	Référence	
	Benzophéno	one-3 (BP-3)		
Eau de surface	Lac de Bled, Slovénie	66	Cuderman et Heath, 2007	
Eau de surface	Lac de Bakovci, Slovénie	≤ 28	Cuderman et Heath, 2007	
	Loo de Zurich Suizas	10 – 20	Balmer et collab., 2005	
Eau de sunace	Lac de Zunch, Suisse	≤ 2 – 4	Poiger et collab., 2004	
Eau de surface	Lac de Greifen, Suisse	20 – 30	Balmer et collab., 2005	
Eau de surface	Lac Hüttnersee, Suisse	23 – 35	Balmer et collab., 2005	
Eau de surface	Lac Jorisee, Suisse	≤2	Balmer et collab., 2005	
Eau de surface	Rivière Glatt, Suisse	56 – 68	Fent, Zenker et collab., 2010	
Eau de surface	Lac Hüttnersee, Suisse	5 – 125	Poiger et collab., 2004	
Eau de surface	Rivière Lao-Jie, Taïwan	1,6 – 39,7	Chung et collab., 2015	
Eau de surface	Tainan, Taïwan	12,3 – 15,4	Wu et collab., 2013	
Eau de surface	Taichung, Taïwan	3	Ho et Ding, 2012	
Eau de surface	Bangkok, Thaïlande	86 – 116	Tsui, Leung et collab., 2014b	
Eau interstitielle	Sancti Petri, Espagne	0,04 - 0,10	Pintado-Herrera et collab., 2013	
Eau interstitielle	Singapour	7,7 – 21,3	Mao, You et collab., 2018	
Glace	Baie Erebus, Antarctique	≤ 2,6 - 3,8	Emnet et collab., 2015	
Benzophénone-4 (BP-4)				
Eau de mer	Arctique	≤ 0,03	Tsui, Leung et collab., 2014b	

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-4 (BP-4)	
Eau de mer	Mer de Chine méridionale	2,91 – 27,8	Tsui et collab., 2019
Eau de mer	Shantou, Chine	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,03 – 49	Tsui, Leung et collab., 2014b
Eau de mer	Hong Kong, Chine	54 – 389	Tsui, Leung et collab., 2014b
Eau de mer	Plage de Toralla, Espagne	58,8	Paredes et collab., 2014
Eau de mer	Plage de Coira, Espagne	164,4	Paredes et collab., 2014
Eau de mer	Plage de Santa Cristina, Espagne	38 – 138	Rodil, Quintana et collab., 2008
Eau de mer	New York, États-Unis	89 – 574	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 12,5	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 12,5	Bratkovics et collab., 2015
	Folly Beach - Caroline du Sud, États-Unis	< 12,5	Bratkovics et collab., 2015
Eau de mei		≤ 1	Bratkovics et Sapozhnikova, 2011
Eau de mer	Tokyo, Japon	71 – 136	Tsui, Leung et collab., 2014b
Eau de mer	Mer Méditerranée	≤ 1	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 1	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 1 – 226	Orlikowska et collab., 2015
Eau de mer	Kenting, Taïwan	≤ 0,03 – 12,7	He et collab., 2019b

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-4 (BP-4)	
Eau de surface	Fleuve Rhin, Allemagne	51 – 1 980	Wick et collab., 2010
Eau de surface	Fleuve Huangpu, Chine	≤ 0,1 – 52	Wu et collab., 2017
Eau de surface	Rivière Mero, Espagne	≤ 0,5 – 849	Rodil, Quintana et collab., 2008
Eau de surface	Fleuve Llobregat, Espagne	30,4 - 862	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Fleuve Besos, Espagne	≤ 6 – 1 160	Serra-Roig et collab., 2016
Eau de surface	Lac de Bracciano, Italie	≤ 4 − 7,8	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	≤ 4 – 15,4	Piovesana et collab., 2017
Eau de surface	Rivière Olona, Italie	168	Castiglioni et collab., 2018
Eau de surface	Rivière Seveso, Italie	373	Castiglioni et collab., 2018
Eau de surface	Rivière Lambro, Italie	109 – 241	Castiglioni et collab., 2018
Eau de surface	Mer Baltique et son bassin versant	≤ 1	Fisch et collab., 2017
Eau de surface	République tchèque	4,6 – 390	Grabicova et collab., 2013
Eau de surface	Rivière Taf, Royaume-Uni	≤ 3 000 – 371 000	Kasprzyk-Hordern et collab., 2008b
Equido ourfoco	Rivière Taf, Royaume-Uni	10 000 – 227 000	Kasprzyk-Hordern et collab., 2008a
Eau de sullace		≤ 3 000 – 302 000	Kasprzyk-Hordern et collab., 2009
Fou do ourfooc	Rivière Ely, Royaume-Uni	≤ 3 000 – 323 000	Kasprzyk-Hordern et collab., 2008b
Eau de Sullace		≤ 3 – 144	Kasprzyk-Hordern et collab., 2009
Eau de surface	Bangkok, Thaïlande	80 – 95	Tsui, Leung et collab., 2014b
Matrice	Localisation	Concentration (ng/l)	Référence
--------------------	---	-------------------------	-------------------------------
	Benzophénc	one-6 (BP-6)	
Eau de surface	Singapour	≤ ld – 27,6	Mao, You et collab., 2018
Eau interstitielle	Singapour	4,0 - 41,0	Mao, You et collab., 2018
	Benzophénc	one-8 (BP-8)	
Eau de mer	Arctique	2 – 3,3	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	≤ 1,38	Tsui et collab., 2019
Eau de mer	Shenzhen, Chine	≤ 28,1 – 68,91	Li, Law et collab., 2018
Fou do mor	Hong Kong, Chine	64 – 117	Tsui, Leung et collab., 2014b
Eau de mei		≤ 15 – 29,5	Li, Sang et collab., 2017
Eau de mer	Shantou, Chine	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Espagne	≤ 8,2	Vila et collab., 2017
Eau de mer	Plage de Los Narejos, Espagne	≤ 33	Tarazona et collab., 2010
Eau de mer	Plage de Poniente, Espagne	≤ 33	Tarazona et collab., 2010
Eau de mer	Plage de Postiguet, Espagne	≤ 33	Tarazona et collab., 2010
Eau de mer	New York, États-Unis	72 – 92	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	29 – 96	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 12,5	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 12,5	Bratkovics et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophéno	ne-8 (BP-8)	
Equido mor	Folly Pooch Carolina du Sud Étata Unio	< 12,5	Bratkovics et collab., 2015
Eau de mei	Folly Beach, Caroline du Sud, Elais-Ohis	≤ 1	Bratkovics et Sapozhnikova, 2011
Eau de mer	Tokyo, Japon	76 – 96	Tsui, Leung et collab., 2014b
Eau de mer	Lac Jellyfish, Palaos	≤ 1 – 4,56	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 0,6	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ 0,6 - 29,8	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ 0,6	Bell et collab., 2017
Eau de mer	Kenting, Taïwan	60,1 - 60,4	He et collab., 2019b
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006
Eau de surface	Rivière Dongjiang, Chine	≤ 4,8	Li, Sang et collab., 2017
Fau do surfaco	Espagno	≤ 8,2	Vila et collab., 2017
Lau de Sullace	Espagne	≤ 1,1	Negreira et collab., 2009
Eau de surface	Fleuve Besos, Espagne	≤ 5	Serra-Roig et collab., 2016
Eau de surface	Fleuve Llobregat, Espagne	≤ 1	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Lacs Fort Gibson, Grand, Kaw, Keystone, Oologah et Skiatook, Oklahoma, États-Unis	nd	Layton, 2015
Eau de surface	Lac de Bracciano, Italie	≤ 10	Piovesana et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence	
	Benzophéno	one-8 (BP-8)		
Eau de surface	Fleuve Tibre, Italie	≤ 5	Piovesana et collab., 2017	
Eau de surface	Singapour	2 – 10,3	Mao, You et collab., 2018	
Eau de surface	Rivière Lao-Jie, Taïwan	≤ 1 – 19,7	Chung et collab., 2015	
Eau de surface	Tainan, Taïwan	≤ 1	Wu et collab., 2013	
Eau de surface	Taichung, Taïwan	≤ 1	Ho et Ding, 2012	
Eau de surface	Bangkok, Thaïlande	63 – 71	Tsui, Leung et collab., 2014b	
Eau interstitielle	Singapour	5,9 – 14,1	Mao, You et collab., 2018	
	Benzophénor	ne-10 (BP-10)		
Equido surfaço	Eleuve Tama, Japon	12	Kawaguchi et collab., 2008	
	rieuve rama, Japon	68,9	Okanouchi et collab., 2008	
	2-hydroxybenzo	phenone (2HBP)		
Eau de surface	Fleuve Tama, Japon	≤2	Kawaguchi et collab., 2008	
Eau de surface	Rivière Lao-Jie, Taïwan	≤ 0,5 – 14,7	Chung et collab., 2015	
3-hydroxy-benzophenone (3HBP)				
Eau de surface	Fleuve Tama, Japon	7	Kawaguchi et collab., 2008	
Eau de surface	Rivière Lao-Jie, Taïwan	≤ 1	Chung et collab., 2015	
	4-hydroxybenzo	phénone (4HBP)		
Eau de mer	Shenzhen, Chine	≤ 83,14 – 122,25	Li, Law et collab., 2018	
Eau de mer	Hong Kong, Chine	≤ 8,8	Li, Sang et collab., 2017	

Matrice	Localisation	Concentration (ng/l)	Référence
	4-hydroxybenzop	phénone (4HBP)	
Eau de mer	Lac Jellyfish, Palaos	≤ 1,1	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 1,1	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ I,1	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ I,1	Bell et collab., 2017
Eau de mer	Costa da Caparica, Portugal	≤ 400	Almeida et collab., 2013
Eau de surface	Fleuve Huangpu, Chine	≤ 0,1 – 4,5	Wu et collab., 2017
Eau de surface	Rivière Han Jiang, Chine	≤ 1 900	Ye et collab., 2011
Eau de surface	Fleuve Chang Jiang, Chine	≤ 2 200	Ye et collab., 2011
Fou do surfaço	Lac de l'Est, Chine	≤ 3 700	Ye et collab., 2011
Lau de sullace		≤ 200	Zhang, Shi et collab., 2011
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 50	Jeon et collab., 2006
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	85	Jeon et collab., 2006
	Fleuve Besòs, Espagne	≤7	Serra-Roig et collab., 2016
Eau de sullace		10,1 – 12,1	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Ripoll, Espagne	≤ 3,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Riu Sec, Espagne	≤ 3,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Ruisseau de Rubi, Espagne	≤ 3,7 – 10,5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Cardaner, Espagne	≤ 3,7	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence	
	4-hydroxybenzop	phénone (4HBP)		
Eau do surfaco	Eleuwe Llebroget, Espagne	≤ 1,1	Gago-Ferrero, Mastroianni et collab., 2013	
Lau de sullace	rieuve Liobiegai, Espagile	≤ 3,7	Molins-Delgado, Távora et collab., 2017	
Eau de surface	Lac de Bracciano, Italie	≤ 3	Piovesana et collab., 2017	
Eau de surface	Fleuve Tibre, Italie	≤ 3 – 3,5	Piovesana et collab., 2017	
Eau de surface	Singapour	≤ ld – 15,2	Mao, You et collab., 2018	
Eau de surface	Rivière Lao-Jie, Taïwan	≤2	Chung et collab., 2015	
Eau interstitielle	Singapour	2,2 – 39,4	Mao, You et collab., 2018	
	2,3,4-trihydroxy ber	nzophénone (THB)		
Eau de mer	Plage de Los Narejos, Espagne	≤ 50	Tarazona et collab., 2010	
Eau de surface	Fleuve Huangpu, Chine	≤ 1	Wu et collab., 2017	
Eau de mer	Plage de Poniente, Espagne	≤ 50	Tarazona et collab., 2010	
Eau de mer	Plage de Postiguet, Espagne	≤ 50	Tarazona et collab., 2010	
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 10	Jeon et collab., 2006	
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 10	Jeon et collab., 2006	
	4,4'-Dihydroxybenzophénone (4DHB)			
Eau de mer	Hong Kong, Chine	≤ 8,7	Li, Sang et collab., 2017	
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015	
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015	

Matrice	Localisation	Concentration (ng/l)	Référence
	4,4'-Dihydroxyber	nzophénone (4DHB)	
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique et son bassin versant	≤ 5	Fisch et collab., 2017
		≤ 6	Serra-Roig et collab., 2016
Eau de surface	Fieuve besos, Espagne	≤ 6	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Ripoll, Espagne	≤ 6	Molins-Delgado, Távora et collab., 2017
Eau de surface	Riu Sec, Espagne	≤ 6	Molins-Delgado, Távora et collab., 2017
Eau de surface	Ruisseau de Rubi, Espagne	≤ 6 − 9,2	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Cardaner, Espagne	≤ 6	Molins-Delgado, Távora et collab., 2017
Eau de surface	Fleuve Llobregat, Espagne	≤ 6	Molins-Delgado, Távora et collab., 2017
Eau de surface	Fleuve Llobregat, Espagne	≤ 1,8	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Lac de Bracciano, Italie	≤ 1 – 31,2	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	≤ 1 − 4,6	Piovesana et collab., 2017
Eau de surface	Fleuve Tama, Japon	6	Kawaguchi et collab., 2008
Eau de surface	Singapour	0,2 - 26,7	Mao, You et collab., 2018
Eau interstitielle	Singapour	≤ ld – 3,8	Mao, You et collab., 2018
	4-phénylbenz	ophénone (4PB)	
Eau de surface	Chine	≤ 1 860	Li, Ma et collab., 2013

Matrice	Localisation	Concentration (ng/l)	Référence		
	Diéthylamino hydroxybenzo	oyl hexyl benzoate (DHI	HB)		
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 1,3 – 163,5	Sánchez Rodríguez et collab., 2015		
Eau de mer	Plage de Mogán, Grande Canarie	≤ 4,2 – 144,4	Sánchez Rodríguez et collab., 2015		
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 1,3 – 34,7	Sánchez Rodríguez et collab., 2015		
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 1,3 – 176,3	Sánchez Rodríguez et collab., 2015		
	Benzhyd	rol (BH)			
Eau de surface	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006		
Eau de surface	Lacs des bassins versants des fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 25	Jeon et collab., 2006		
Eau de surface	Rivière Singapour, Singapour	≤ 45	Zhang et Lee, 2012b		
Eau de surface	Réservoir de Pandan, Singapour	≤ 45	Zhang et Lee, 2012b		
	Acide para-aminok	benzoïque (PABA)	·		
Eau de surface	Lac de Bracciano, Italie	≤ 2	Piovesana et collab., 2017		
Eau de surface	Fleuve Tibre, Italie	≤ 10	Piovesana et collab., 2017		
	Ethyl PABA (Et-PABA)				
Eau de mer	Hong Kong, Chine	≤ 9,2	Li, Sang et collab., 2017		
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015		
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015		
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015		
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015		

Matrice	Localisation	Concentration (ng/l)	Référence
	Ethyl PAB	A (Et-PABA)	
Eau de mer	Mer Baltique et son bassin versant	≤ 5	Fisch et collab., 2017
Fou do ourfooo		27,2 - 38,6	Molins-Delgado, Távora et collab., 2017
Lau de Sunace	Fieuve Desus, Espagne	≤ 11	Serra-Roig et collab., 2016
Equido surfaço	Elouvo Llobrogat Espagno	≤ 1,5	Gago-Ferrero, Mastroianni et collab., 2013
Eau de sunace	Fleuve Liobregal, Espagne	≤ 5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Ripoll, Espagne	7,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Riu Sec, Espagne	51,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Ruisseau de Rubi, Espagne	≤ 5 – 111,9	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Cardaner, Espagne	≤ 1,5 – 5,5	Molins-Delgado, Távora et collab., 2017
Eau de surface	Lac de Bracciano, Italie	≤ 10	Piovesana et collab., 2017
Eau de surface	Fleuve Tibre, Italie	≤ 10	Piovesana et collab., 2017
	Octyl diméthyl l	PABA (OD-PABA)	
Eau de mer	Arctique	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	1,07 – 29,16	Tsui et collab., 2019
Eau de mer	Shenzhen, Chine	≤ 2,77 – 10,1	Li, Law et collab., 2018
Fau do mor	Hong Kong, Chino	95 – 182	Tsui, Leung et collab., 2014b
Lau de mei	Tiong Kong, Chine	≤ 15 – 46,1	Li, Sang et collab., 2017
Eau de mer	Shantou, Chine	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,03	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	Octyl diméthyl P	ABA (OD-PABA)	
Fou do mor	Fanagna	≤ 5,4	Vila et collab., 2016
Eau de mer	Espagne	≤ 0,096	Vila et collab., 2017
Equido mor		105 ± 6	Benedé et collab., 2014b
Eau de mei		≤ 70	Vidal et collab., 2010
Eau de mer (fraction particulaire)	Plage de la Malva-Rosa, Espagne	190 ± 40	Benedé et collab., 2014a
Eau de mer (fraction totale)		290 ± 40	Benedé et collab., 2014a
Eau de mer	Plage de Bellreguard, Espagne	≤ 70	Vidal et collab., 2010
Eau de mer	Plage de Santa Pola, Espagne	≤ 70	Vidal et collab., 2010
Eau de mer	Plage de Puçol, Espagne	201 ± 20	Chisvert et collab., 2017
Fau de mer	Plage de Patacona, Espagne	187 ± 30	Chisvert et collab., 2017
Lau de mei		212 ± 20	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	682	Román et collab., 2011
Eau de mer	Plage de Santa Cristina, Espagne	≤ 0,7	Rodil, Quintana et collab., 2008
Eau de mer (fraction particulaire)	Plage de Palmira, Majorque, Espagne	83 ± 12	Benedé et collab., 2014a
Eau de mer (fraction totale)	- riage de Fairilia, Majorque, Espagne	246 ± 5	Benedé et collab., 2014a
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	100 ± 3	Benedé et collab., 2014b
Eau de mer	Majorque, Espagne	≤ 890	Suárez et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	Octyl diméthyl P	ABA (OD-PABA)	
Eau de mer		107 ± 4	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de Pinedo, Espagne	30 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)		163 ± 14	Benedé et collab., 2014a
Eau de mer	New York, États-Unis	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 12,5 – 104	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 12,5 – 77	Bratkovics et collab., 2015
Equido mor	Folly Beach, Caroline du Sud, États-Unis	< 12,5 – 191	Bratkovics et collab., 2015
Lau de mei		≤ 1 – 111	Bratkovics et Sapozhnikova, 2011
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	0,1 – 12,4	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,1 – 7,8	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	0,1 – 9,1	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 1,2	Sánchez Rodríguez et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	Octyl diméthyl F	PABA (OD-PABA)	
Eau de mer	Mer Ionienne, Grèce	≤ 270	Lambropoulou et collab., 2002
Eau de mer	Plage Foce, Italie	≤ 0,6	Magi et collab., 2012
Eau de mer	Plage de Mogushi, Japon	≤ 0,096	Sankoda et collab., 2015
Eau de mer	Plage de Wakamiya, Japon	≤ 0,096	Sankoda et collab., 2015
Eau de mer	Plage de Tsurugahama, Japon	≤ 0,096	Sankoda et collab., 2015
Eau de mer	Plage d'Otachimisaki, Japon	≤ 0,096	Sankoda et collab., 2015
Eau de mer	Okinawa, Japon	≤ 3 – 4,1	Tashiro et Kameda, 2013
Eau de mer	Tokyo, Japon	≤ 0,03	Tsui, Leung et collab., 2014b
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique et son bassin versant	≤ 5	Fisch et collab., 2017
Eau de mer	Lac Jellyfish, Palaos	≤ 1	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 1	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ 1	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ 1	Bell et collab., 2017
Fau de surfaca	Lac de Cospuden Allemagne	≤ 0,4	Rodil et collab., 2009b
Lau de Sunace	Lac de Cospuden, Allemaylle	2 ± 0,2	Rodil et Moeder, 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	Octyl diméthyl F	PABA (OD-PABA)	
Eau de surface	Étang Bagger, Allemagne	≤ 0,2 – 5	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	3 ± 0,5	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	≤ 0,2	Rodil et Moeder, 2008b
Eau de surface	Baie de Port Phillip, Australie	≤ 0,2 - 0,4	Allinson et collab., 2018
Eau de surface	Chine	950 – 3 120	Ma et collab., 2017b
Eau de surface	Fleuve Jaune, Chine	920 – 1 960	Xue et collab., 2013
Eau de surface	Lac, Xiamen, Chine	3 130	Mei et Huang, 2017
Eau de surface	Rivière, Xiamen, Chine	2 980	Mei et Huang, 2017
Eau de surface	Rivière Dongjiang, Chine	≤ 4,9	Li, Sang et collab., 2017
Equido surfaço	Espagne	≤ 0,096	Vila et collab., 2017
		≤ 5,4	Vila et collab., 2016
	Fleuve Turia, Espagne	≤ 70	Vidal et collab., 2010
Equido ourfoco		93 ± 8	Chisvert et collab., 2017
Eau de sullace		240	Román et collab., 2011
		≤ 99	Benedé et collab., 2016
Eau de surface	Fleuve Júcar, Espagne	≤ 70	Vidal et collab., 2010
Eau de surface	Rivière Mijares, Espagne	146 ± 5	Chisvert et collab., 2017
Eau de surface	Rivière Mero, Espagne	≤ 0,7	Rodil, Quintana et collab., 2008
Eau de surface	Fleuve Llobregat, Espagne	≤ 25	Pedrouzo et collab., 2010

Matrice	Localisation	Concentration (ng/l)	Référence	
	Octyl diméthyl P.	ABA (OD-PABA)		
Eau de surface	Ames, Iowa, États-Unis	≤ 5	Trujillo-Rodriguez et collab., 2018	
Eau de surface	Lac de Bracciano, Italie	≤ 1	Piovesana et collab., 2017	
Eau de surface	Fleuve Tibre, Italie	≤ 2	Piovesana et collab., 2017	
Eau de surface	Rivière Sturla, Italie	≤ 0,6	Magi et collab., 2012	
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3	Tashiro et Kameda, 2013	
Eau de surface	Préfecture de Saitama, Japon	≤ 0,2 – 5	Kameda et collab., 2011	
Eau de surface	Rivière Nadiža-Soča, Slovénie	≤ 26	Cuderman et Heath, 2007	
Eau de surface	Rivière Kolpa, Slovénie	47	Cuderman et Heath, 2007	
Eau de surface	Lac de Rakitna, Slovénie	34	Cuderman et Heath, 2007	
Eau de surface	Lac de Bohinj, Slovénie	≤ 19	Cuderman et Heath, 2007	
Eau de surface	Lac Šobec, Slovénie	≤ 19	Cuderman et Heath, 2007	
Eau de surface	Lac de Bled, Slovénie	≤ 19	Cuderman et Heath, 2007	
Eau de surface	Lac de Bakovci, Slovénie	24	Cuderman et Heath, 2007	
Eau de surface	Bangkok, Thaïlande	≤ 0,03	Tsui, Leung et collab., 2014b	
3-(4-méthylbenzylidène) camphor (4-MBC)				
Eau de mer	Baie Erebus, Antarctique	≤ 3,2 – 45,1	Emnet et collab., 2015	
Eau de mer	Arctique	≤ 0,28	Tsui, Leung et collab., 2014b	
Eau de mer	Lac Bay, Bonaire	≤ 10	Schaap et Slijkerman, 2018	
Eau de mer	Mer de Chine méridionale	1,44 – 98,67	Tsui et collab., 2019	

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylidè	ne) camphor (4-MBC)	
Eau de mer	Shenzhen, Chine	≤ 7,16	Li, Law et collab., 2018
Fau do mor	Hong Kong, Chino	173 – 379	Tsui, Leung et collab., 2014b
Lau de mei		20,4 - 74,5	Li, Sang et collab., 2017
Eau de mer	Shantou, Chine	≤ 0,28	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,28	Tsui, Leung et collab., 2014b
Fau do mor	Espagno	≤ 0,29	Vila et collab., 2016
Lau de mei	Lspagne	≤ 0,84	Vila et collab., 2017
Eau de mer	Plage de Coira, Espagne	84,6	Paredes et collab., 2014
Eau de mer	Plage de Toralla, Espagne	≤ 1	Paredes et collab., 2014
Foundament		102 ± 9	Benedé et collab., 2014b
		≤ 60	Vidal et collab., 2010
Eau de mer (fraction particulaire)	Plage de la Malva-Rosa, Espagne	170 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)		220 ± 20	Benedé et collab., 2014a
Eau de mer		96 ± 9	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de Pinedo, Espagne	≤ 10	Benedé et collab., 2014a
Eau de mer (fraction totale)		≤ 10	Benedé et collab., 2014a
Eau de mer	Plage de Puçol, Espagne	105 ± 10	Chisvert et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylidè	ne) camphor (4-MBC)	
Equido mor	Plago do Potacono, Espagno	144 ± 10	Chisvert et collab., 2017
Lau de mei	Flage de Falacolla, Espagne	169 ± 30	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	358	Román et collab., 2011
Eau de mer	Plage de Bellreguard, Espagne	≤ 60	Vidal et collab., 2010
Eau de mer	Plage de Santa Cristina, Espagne	≤ 4	Rodil, Quintana et collab., 2008
Eau de mer	Rio San Pedro, Espagne	46 ± 4	Pintado-Herrera et collab., 2014
Eau de mer	Plage de Santa Pola, Espagne	≤ 60	Vidal et collab., 2010
Eau de mer (fraction particulaire)	Plage de Palmira, Majorque, Espagne	70 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)		192 ± 19	Benedé et collab., 2014a
Eau de mer		30,5 – 109,6	Tovar-Sanchez et collab., 2013
Fou do mor	Plage de Santa Ponsa, Majorque, Espagno	120 ± 4	Benedé et collab., 2014b
Lau de mei	riage de Santa Fonsa, Majorque, Espagne	14,7 – 65,0	Tovar-Sanchez et collab., 2013
Eau de mer	Majorque, Espagne	≤ 80	Suárez et collab., 2016
Eau de mer	Ville de Ses Salines, Majorque, Espagne	≤ ld – 26,6	Tovar-Sanchez et collab., 2013
Eau de mer	New York, États-Unis	≤ 0,28	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	≤ 0,28	Tsui, Leung et collab., 2014b
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	≤ 1,5	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 1,5	Mitchelmore et collab., 2019

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylidèr	ne) camphor (4-MBC)	
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 1,5	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 0,9 – 7,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	4,1 – 219,5	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 0,9 – 104,8	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	≤ 3,1 – 346,3	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 0,9 – 29,7	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 0,9 – 1 043,4	Sánchez Rodríguez et collab., 2015
Eau de mer	Grèce	13,1 – 19,7	Giokas et collab., 2005
Eau de mer	Épire, Grèce	≤ 8	Giokas et collab., 2004
Eau de mer	Trunk Bay, îles Vierges américaines	≤ 5	Bargar et collab., 2015
Eau de mer	Brown Bay, îles Vierges américaines	≤ 5	Bargar et collab., 2015
Eau de mer	Lamehur Bay, Leinster Bay, Maho Bay et Cinnamon Bay, îles Vierges américaines	≤ 5	Bargar et collab., 2015
Eau de mer	Okinawa, Japon	≤ 3	Tashiro et Kameda, 2013
Eau de mer	Tokyo, Japon	≤ 0,28	Tsui, Leung et collab., 2014b
Eau de mer	Plage de Mogushi, Japon	≤ 0,15	Sankoda et collab., 2015
Eau de mer	Plage de Wakamiya, Japon	≤ 0,15	Sankoda et collab., 2015
Eau de mer	Plage de Tsurugahama, Japon	≤ 0,15	Sankoda et collab., 2015
Eau de mer	Plage d'Otachimisaki, Japon	≤ 0,15	Sankoda et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylide	ene) camphor (4-MBC)	
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique et son bassin versant	≤ 5	Fisch et collab., 2017
Eau de mer	Oslofjord, Norvège	≤ 5	Langford et Thomas, 2008
Eau de mer	Plage de Huk, Norvège	1,1 – 9,8	Langford et Thomas, 2008
Eau de mer	Kalvøya, Norvège	≤ 5 – 40,7	Langford et Thomas, 2008
Eau de mer	Sandvika, Norvège	≤ 5 – 798,7	Langford et Thomas, 2008
Eau de mer	Ostøya, Norvège	2,2 - 20,1	Langford et Thomas, 2008
Eau de mer	Océan Pacifique	18 – 30	Goksoyr et collab., 2009
Eau de mer	Lac Jellyfish, Palaos	≤ 0,6	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 0,6	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ 0,6 - 21,6	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ 0,6	Bell et collab., 2017
		1 140 ± 50	Rodil et collab., 2009b
Eau de surface	Lac de Cospuden, Allemagne	2 350 – 2 592	Moeder et collab., 2010
		≤ 4 – 25	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	53 – 148	Rodil et Moeder, 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylidèr	ne) camphor (4-MBC)	
Eau de surface	Rivière Elsterbecken, Allemagne	5 ± 0,2	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	15 ± 2	Rodil et Moeder, 2008b
Eau de surface	Baie de Port Phillip, Australie	≤ 0,1 – 642	Allinson et collab., 2018
Eau de surface	Fleuve Itajaí-Açu, Brésil	≤ 8	Kirschner et collab., 2017
Eau de surface	Fleuve São Francisco, Brésil	≤ 8	Kirschner et collab., 2017
Eau de surface	Guangzhou, Chine	≤ 1,3 – 10	Liu, Liu et collab., 2010
Eau de surface	Lac, Xiamen, Chine	≤ 40	Mei et Huang, 2017
Eau de surface	Rivière, Xiamen, Chine	2 240	Mei et Huang, 2017
Eau de surface	Rivière Dongjiang, Chine	≤ 2,6 – 18,9	Li, Sang et collab., 2017
Eau de surface	Espagne	≤ 0,29	Vila et collab., 2016
		≤ 0,84	Vila et collab., 2017
		≤ 60	Vidal et collab., 2010
	Fleuve Turia, Espagne	≤ 50,2	Chisvert et collab., 2017
Eau de sullace		264	Román et collab., 2011
		≤ 78	Benedé et collab., 2016
Fou do ourfooc		≤ 11,7 – 13,1	Molins-Delgado, Távora et collab., 2017
Eau de sunace	⊢leuve Besos, Espagne	≤ 24	Serra-Roig et collab., 2016
Eau de surface	Rivière Ripoll, Espagne	13,9	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylide	ne) camphor (4-MBC)	
Eau de surface	Riu Sec, Espagne	18,2	Molins-Delgado, Távora et collab., 2017
Eau de surface	Ruisseau de Rubi, Espagne	≤ 11,7 – 25,8	Molins-Delgado, Távora et collab., 2017
Fou do surfoco	Elouvo Llobrogat, Espagno	≤ 11,7 – 34,3	Molins-Delgado, Távora et collab., 2017
Eau de sullace	Fieuve Libblegal, Espagne	≤ 3,5 – 12,6	Gago-Ferrero, Mastroianni et collab., 2013
Eau de surface	Rivière Cardaner, Espagne	≤ 11,7	Molins-Delgado, Távora et collab., 2017
Eau de surface	Rivière Mijares, Espagne	≤ 50,2	Chisvert et collab., 2017
Eau de surface	Rivière Mero, Espagne	≤ 4	Rodil, Quintana et collab., 2008
Eau de surface	Fleuve Guadalete, Espagne	46 ± 2	Pintado-Herrera et collab., 2014
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3	Tashiro et Kameda, 2013
Eau de surface	Préfecture de Saitama, Japon	≤ 0,1	Kameda, Kimura et collab., 2011
Eau de surface	Rivière Singapour, Singapour	≤ 1	Ge et Lee, 2012
Eau de surface	Rivière Nadiža-Soča, Slovénie	≤ 181	Cuderman et Heath, 2007
Eau de surface	Rivière Kolpa, Slovénie	≤ 181	Cuderman et Heath, 2007
Eau de surface	Lac de Rakitna, Slovénie	≤ 143	Cuderman et Heath, 2007
Eau de surface	Lac de Bohinj, Slovénie	≤ 143	Cuderman et Heath, 2007
Eau de surface	Lac Šobec, Slovénie	≤ 143	Cuderman et Heath, 2007
Eau de surface	Lac de Bled, Slovénie	≤ 143	Cuderman et Heath, 2007
Eau de surface	Lac de Bakovci, Slovénie	≤ 143	Cuderman et Heath, 2007

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylide	ne) camphor (4-MBC)	
Eau de surface	Rivière Glatt, Suisse	12 – 17	Fent, Zenker et collab., 2010
Equido surfaço		≤ 2 − 82	Poiger et collab., 2004
Lau de sullace	Lat Huttleisee, Suisse	7 – 28	Balmer et collab., 2005
Eau de surface	Lac de Zurich Suisse	2 – 11	Balmer et collab., 2005
		≤ 2 – 22	Poiger et collab., 2004
Eau de surface	Lac de Greifen, Suisse	10 – 12	Balmer et collab., 2005
Eau de surface	Lac Jorisee, Suisse	≤ 2	Balmer et collab., 2005
Eau de surface	Bangkok, Thaïlande	≤ 0,28	Tsui, Leung et collab., 2014b
Glace	Baie Erebus, Antarctique	≤ 3,2 − 4,3	Emnet et collab., 2015
	3-benzylidène o	amphor (3-BC)	
Eau de mer	Océan Pacifique	9 – 13	Goksoyr et collab., 2009
Eau de mer	Hong Kong, Chine	≤ 8,7	Li, Sang et collab., 2017
Eau de mer	Shenzhen, Chine	≤ 46,03	Li, Law et collab., 2018
	2-éthylhexyl sa	alicylate (EHS)	
Eau de mer	Arctique	≤ 0,1	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	0,85 – 27,78	Tsui et collab., 2019
Eau de mer	Hong Kong, Chine	61 – 1 030	Tsui, Leung et collab., 2014b
Eau de mer	Shantou, Chine	≤ 0,1	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	121 – 128	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl s	alicylate (EHS)	
Equido mor	Espagno	420	Vila et collab., 2016
Lau de mei	Lspagne	34 – 2 500	Vila et collab., 2017
Eau de mer	Plage de Puçol, Espagne	553 ± 40	Chisvert et collab., 2017
Fou do mor	Diago do Dotocono, Echagono	731 ± 40	Chisvert et collab., 2017
Eau de mei	Flage de Falacolla, Espagne	914 ± 14	Benedé et collab., 2016
Eau de mer	Rio San Pedro, Espagne	≤ 0,28	Pintado-Herrera et collab., 2014
Eau de mer	Plage de Postiguet, Espagne	792	Román et collab., 2011
Eau de mer	Plage de la Malva-Rosa, Espagne	83 ± 4	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	- Plage de la Malva-Rosa, Espagne	280 ± 50	Benedé et collab., 2014a
Eau de mer (fraction totale)		750 ± 50	Benedé et collab., 2014a
Eau de mer		89 ± 11	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de Pinedo, Espagne	50 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)		440 ± 20	Benedé et collab., 2014a
Eau de mer (fraction particulaire)	Plago do Polmiro, Mojorque, Espagno	200 ± 40	Benedé et collab., 2014a
Eau de mer (fraction totale)	- Plage de Palmira, Majorque, Espagne	880 ± 30	Benedé et collab., 2014a
Eau de mer	Majorque, Espagne	≤ 3 939	Suárez et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl s	alicylate (EHS)	
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	95 ± 8	Benedé et collab., 2014a
Eau de mer	New York, États-Unis	≤ 0,1	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	53 – 120	Tsui, Leung et collab., 2014b
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	27,5 – 21,2	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	39,1 – 79,1	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 6,06	Mitchelmore et collab., 2019
Eau de mer	Plage Foce, Italie	≤ 114	Magi et collab., 2012
Eau de mer	Okinawa, Japon	≤ 3 – 10	Tashiro et Kameda, 2013
Eau de mer	Tokyo, Japon	71 – 95	Tsui, Leung et collab., 2014b
Eau de mer	Plage de Mogushi, Japon	2,2 - 4,3	Sankoda et collab., 2015
Eau de mer	Plage de Wakamiya, Japon	2 – 10	Sankoda et collab., 2015
Eau de mer	Plage de Tsurugahama, Japon	3,8 – 20,9	Sankoda et collab., 2015
Eau de mer	Plage d'Otachimisaki, Japon	3,4 – 23,1	Sankoda et collab., 2015
Fou do ourfoco	Lac de Cospuden, Allemagne	748 ± 60	Rodil et collab., 2009b
Eau de sullace		≤ 4 – 51	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	≤ 4 – 51	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 4	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	≤ 4	Rodil et Moeder, 2008b
Eau de surface	Baie de Port Phillip, Australie	≤ 0,4 - 31,6	Allinson et collab., 2018

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl s	alicylate (EHS)	
Eau de surface	Araraquara, Brésil	≤ 40,4	da Silva et collab., 2015
Eau de surface	Chine	≤ 50	Ma et collab., 2017b
Eau de surface	Lac, Xiamen, Chine	≤ 260	Mei et Huang, 2017
Eau de surface	Rivière, Xiamen, Chine	≤ 260	Mei et Huang, 2017
Eau de surface	Fleuve Jaune, Chine	≤ 140	Xue et collab., 2013
		≤ 0,2	Negreira et collab., 2009
Eau de surface	Espagne	9,2 - 89 000	Vila et collab., 2016
		55 – 46 000	Vila et collab., 2017
	Fleuve Turia, Espagne	334 ± 10	Chisvert et collab., 2017
Eau de surface		126 ± 15	Benedé et collab., 2016
		146	Román et collab., 2011
Eau de surface	Rivière Mijares, Espagne	534 ± 50	Chisvert et collab., 2017
Eau de surface	Fleuve Guadalete, Espagne	≤ 0,28	Pintado-Herrera et collab., 2014
Eau de surface	Ames, Iowa, États-Unis	23 – 34	Trujillo-Rodriguez et collab., 2018
Eau de surface	Lacs Fort Gibson, Grand, Kaw, Keystone, Oologah et Skiatook, Oklahoma, États-Unis	301	Layton, 2015
Eau de surface	Rivière Sturla, Italie	≤ 114	Magi et collab., 2012
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 0,3 – 1,8	Tashiro et Kameda, 2013
Eau de surface	Préfecture de Saitama, Japon	≤ 0,4 - 266	Kameda et collab., 2011

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl sa	alicylate (EHS)	
Eau de surface	Singapour	≤ 5 000	Zhang et Lee, 2012a
Eau de surface	Rivière Singapour, Singapour	≤ 22	Zhang et Lee, 2012b
Eau de surface	Réservoir de Pandan, Singapour	≤ 22	Zhang et Lee, 2012b
Eau de surface	Tainan, Taïwan	≤ 2 – 10,6	Wu et collab., 2013
Eau de surface	Bangkok, Thaïlande	28 – 56	Tsui et collab., 2014b
	Benzyl sali	cylate (BS)	,
Eau de mer	Baie Terra Nova, Antarctique	2,2 - 4,5	Vecchiato et collab., 2017
Fou do mor	Espagne	200	Vila et collab., 2017
Eau de mei		≤ 27	Vila et collab., 2016
Eau de mer	Okinawa, Japon	≤ 3	Tashiro et Kameda, 2013
Eau de surface	Baie de Port Phillip, Australie	≤ 3 − 6,0	Allinson et collab., 2018
	_	110 – 410	Vila et collab., 2017
Eau de surface	Espagne	10 – 59	Vila et collab., 2016
Eau de surface	Ames, Iowa, États-Unis	≤ 55	Trujillo-Rodriguez et collab., 2018
Eau de surface	Venise, Italie	≤ 10,7 – 2 400	Vecchiato et collab., 2016
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3	Tashiro et Kameda, 2013
Eau de surface	Préfecture de Saitama, Japon	≤ 3 – 197	Kameda et collab., 2011
	Homosa	ate (HS)	
Eau de mer	Arctique	≤ 0,11	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	Homosa	alate (HS)	
Eau de mer	Mer de Chine méridionale	3,60 - 41,84	Tsui et collab., 2019
Eau de mer	Hong Kong, Chine	66 – 2 812	Tsui, Leung et collab., 2014b
Eau de mer	Shantou, Chine	≤ 0,11	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,11	Tsui, Leung et collab., 2014b
Fou do mor	Economo	720	Vila et collab., 2016
Eau de mei	Espagne	1 300	Vila et collab., 2017
Eau de mer	Plage de Puçol, Espagne	257 ± 10	Chisvert et collab., 2017
Fou do mor	Plage de Patacona, Espagne	497 ± 7	Chisvert et collab., 2017
Eau de mei		369 ± 40	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	625	Román et collab., 2011
Eau de mer	Rio San Pedro, Espagne	9 ± 2	Pintado-Herrera et collab., 2014
Eau de mer		87 ± 3	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de la Malva-Rosa, Espagne	162 ± 13	Benedé et collab., 2014a
Eau de mer (fraction totale)		280 ± 9	Benedé et collab., 2014a
Eau de mer (fraction particulaire)	Place de Palmira, Majorque, Espagne	110 ± 30	Benedé et collab., 2014a
Eau de mer (fraction totale)	Plage de Palmira, Majorque, Espagne	310 ± 20	Benedé et collab., 2014a

Matrice	Localisation	Concentration (ng/l)	Référence
	Homosal	ate (HS)	
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	87 ± 6	Benedé et collab., 2014b
Eau de mer	New York, États-Unis	91 – 114	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	142 – 270	Tsui, Leung et collab., 2014b
Eau de mer	Chesapeake Bay, Maryland, États-Unis	15,5 – 187,9	He et collab., 2019a
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	93,7 – 686,6	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	38,5 – 465,4	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 6,06 – 457,6	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 2,4 – 51,5	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	9,2 – 536,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 2,4 – 319	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	10,8 – 526,1	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 2,4 – 84,8	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 2,4 – 102,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Trunk Bay et Brown Bay, îles Vierges américaines	153 – 633	Bargar et collab., 2015
Eau de mer	Lamehur Bay, Leinster Bay, Maho Bay et Cinnamon Bay, îles Vierges américaines	43 – 103	Bargar et collab., 2015
Eau de mer	Plage Foce, Italie	≤ 94	Magi et collab., 2012
Eau de mer	Tokyo, Japon	65 – 110	Tsui, Leung et collab., 2014b
Eau de mer	Okinawa, Japon	≤ 3 – 214	Tashiro et Kameda, 2013

Matrice	Localisation	Concentration (ng/l)	Référence
	Homosa	late (HS)	
Equido surfaço	Las de Cespuden, Allemagne	≤ 4	Rodil et collab., 2009b
Lau de sunace	Lat de Cospuden, Allemagne	≤ 1	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	4 – 5	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 1	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	5 ± 0,7	Rodil et Moeder, 2008b
		≤ 0,3	Negreira et collab., 2009
Eau de surface	Espagne	7,1 – 72	Vila et collab., 2016
		10 – 1 100	Vila et collab., 2017
	Fleuve Turia, Espagne	193 ± 30	Chisvert et collab., 2017
Eau de surface		342	Román et collab., 2011
		219 ± 3	Benedé et collab., 2016
Eau de surface	Rivière Mijares, Espagne	130 ± 20	Chisvert et collab., 2017
Eau de surface	Fleuve Guadalete, Espagne	8 ± 0,5	Pintado-Herrera et collab., 2014
Eau de surface	Ames, Iowa, États-Unis	≤ 13 – 42	Trujillo-Rodriguez et collab., 2018
Eau de surface	Lacs Fort Gibson, Grand, Kaw, Keystone, Oologah et Skiatook, Oklahoma, États-Unis	537	Layton, 2015
Eau de surface	Rivière Sturla, Italie	≤ 94	Magi et collab., 2012
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3 − 3,2	Tashiro et Kameda, 2013
Eau de surface	Préfecture de Saitama, Japon	≤ 0,4 - 29	Kameda et collab., 2011

Matrice	Localisation	Concentration (ng/l)	Référence
	Homosal	ate (HS)	
Eau de surface	Singapour	≤ 1 000	Zhang et Lee, 2012a
Eau de surface	Rivière Singapour, Singapour	≤ 30	Zhang et Lee, 2012b
Eau de surface	Réservoir de Pandan, Singapour	≤ 30	Zhang et Lee, 2012b
Eau de surface	Rivière Nadiža-Soča, Slovénie	345	Cuderman et Heath, 2007
Eau de surface	Rivière Kolpa, Slovénie	165	Cuderman et Heath, 2007
Eau de surface	Lac de Rakitna, Slovénie	≤ 194	Cuderman et Heath, 2007
Eau de surface	Lac de Bohinj, Slovénie	≤ 194	Cuderman et Heath, 2007
Eau de surface	Lac Šobec, Slovénie	≤ 194	Cuderman et Heath, 2007
Eau de surface	Lac de Bled, Slovénie	≤ 194	Cuderman et Heath, 2007
Eau de surface	Lac de Bakovci, Slovénie	≤ 194	Cuderman et Heath, 2007
Eau de surface	Tainan, Taïwan	≤ 2	Wu et collab., 2013
Eau de surface	Bangkok, Thaïlande	29 – 59	Tsui, Leung et collab., 2014b
	Trolamine sali	cylate (TEAS)	1
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,3	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,3	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,3	Mitchelmore et collab., 2019
	Isoamyl 4-méthox	ycinnamate (IMC)	
Eau de mer	Arctique	≤ 1,04	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	Isoamyl 4-méthox	ycinnamate (IMC)	
Eau de mer	Hong Kong, Chine	63 – 173	Tsui, Leung et collab., 2014b
Eau de mer	Shantou, Chine	≤ 1,04	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 1,04	Tsui, Leung et collab., 2014b
Fou do mor	Fonome	88	Vila et collab., 2016
Eau de mei	Espagne	≤ 0,069	Vila et collab., 2017
Eau de mer	Plage de Bellreguard, Espagne	≤ 160	Vidal et collab., 2010
Eau de mer	Plage de Santa Pola, Espagne	≤ 160	Vidal et collab., 2010
Eau de mer	Plage de Puçol, Espagne	73 ± 9	Chisvert et collab., 2017
Eau de mer		103 ± 9	Chisvert et collab., 2017
Eau de mer	Flage de Falacolla, Espagne	174 ± 11	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	245	Román et collab., 2011
Eau de mer	Plage de Santa Cristina, Espagne	≤ 2,5	Rodil, Quintana et collab., 2008
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	116 ± 7	Benedé et collab., 2014b
Fou do mor		≤ 160	Vidal et collab., 2010
Eau de mei		86 ± 7	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de la Malva-Rosa, Espagne	130 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)		251 ± 18	Benedé et collab., 2014a

Matrice	Localisation	Concentration (ng/l)	Référence
	Isoamyl 4-métho	xycinnamate (IMC)	
Eau de mer		79 ± 2	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de Pinedo, Espagne	118 ± 7	Benedé et collab., 2014a
Eau de mer (fraction totale)		118 ± 7	Benedé et collab., 2014a
Eau de mer (fraction particulaire)	Plage de Polmira, Majorque, Espagne	80 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)	Plage de Palmira, Majorque, Espagne	280 ± 20	Benedé et collab., 2014a
Eau de mer	New York, États-Unis	≤ 1,04	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	≤ 1,04	Tsui, Leung et collab., 2014b
Eau de mer	Tokyo, Japon	≤ 1,04	Tsui, Leung et collab., 2014b
Equido surfaço	Lac de Cospuden, Allemagne	146 ± 20	Rodil et collab., 2009b
Lau de sullace		≤ 2	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	≤ 2 – 51	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 2	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	≤ 2	Rodil et Moeder, 2008b
		66 ± 6	Chisvert et collab., 2017
Eau de surface	Fleuve Turia, Espagne	≤ 6	Román et collab., 2011
		≤ 160	Vidal et collab., 2010
		≤ 95	Benedé et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	Isoamyl 4-méthox	ycinnamate (IMC)	
Equido surfaço	Espagno	6,8	Vila et collab., 2016
Eau de sullace	Eshagire	3 90	Vila et collab., 2017
	Étocrylè	ne (Eto)	
Eau de mer	Espagne	≤ 0,15	Vila et collab., 2017
Eau de surface	Rivière Mijares, Espagne	≤ 3,8	Vila et collab., 2016
Eau de surface	Baie de Port Phillip, Australie	≤ 0,3 – 0,4	Allinson et collab., 2018
Eau de surface	Bangkok, Thaïlande	≤ 1,04	Tsui, Leung et collab., 2014b
	2-éthylhexyl 4-métho:	xycinnamate (EHMC)	
Eau de mer	Arctique	25 – 66	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	3,84 – 55,65	Tsui et collab., 2019
Eau de mer	Shantou, Chine	52 – 78	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,41 – 79	Tsui, Leung et collab., 2014b
Eau de mer	Shenzhen, Chine	≤ 35,9 – 89,71	Li, Law et collab., 2018
Eau de mer	Hong Kong, Chine	89 – 4 043	Tsui, Leung et collab., 2014b
Lau de mei		34,2 – 191,7	Li, Sang et collab., 2017
Fou do mor	Fanagana	1 200	Vila et collab., 2016
Lau de mei	Lohadiie	10	Vila et collab., 2017
Eau de mer	Plage de Coira, Espagne	52,5	Paredes et collab., 2014
Eau de mer	Plage de Toralla, Espagne	35,7	Paredes et collab., 2014

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl 4-métho	xycinnamate (EHMC)	
Eau de mer	Plage de Bellreguard, Espagne	≤ 190	Vidal et collab., 2010
Eau de mer	Plage de Santa Pola, Espagne	≤ 190	Vidal et collab., 2010
Eau de mer	Plage de Puçol, Espagne	349 ± 10	Chisvert et collab., 2017
Fau de mer	Plage de Patacona, Espagne	436 ± 40	Chisvert et collab., 2017
Lau de mei	riage de ratacolia, Espagile	69 ± 40	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	409	Román et collab., 2011
Eau de mer	Rio San Pedro, Espagne	36 ± 1,5	Pintado-Herrera et collab., 2014
Eau de mer	Plage de la Malva-Rosa, Espagne	≤ 190	Vidal et collab., 2010
Eau de mer (fraction totale)		97 ± 5	Benedé et collab., 2014a
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	97 ± 2	Benedé et collab., 2014b
Eau de mer		107 ± 9	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	- Plage de Pinedo, Espagne	38 ± 7	Benedé et collab., 2014a
Eau de mer (fraction totale)		91 ± 6	Benedé et collab., 2014a
Eau de mer (fraction particulaire)	Place de Palmira, Majorque, Espagne	120 ± 20	Benedé et collab., 2014a
Eau de mer (fraction totale)	- riage de Paimira, Majorque, Espagne	260 ± 18	Benedé et collab., 2014a
Eau de mer	New York, États-Unis	89 – 150	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl 4-métho	xycinnamate (EHMC)	
Eau de mer	Los Angeles, États-Unis	91 – 138	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 25 – 35	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 25 – 140	Bratkovics et collab., 2015
Equido mor	Folly Pooch Carolina du Sud Étata Unio	< 25 – 438	Bratkovics et collab., 2015
Eau de mer	Folly beach, Caroline du Sud, Etais-Onis	30 – 264	Bratkovics et Sapozhnikova, 2011
Eau de mer	Chesapeake Bay, Maryland, États-Unis	≤ 0,6 – 115	He et collab., 2019a
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	≤ 1,5	Mitchelmore et collab., 2019
Eau de mer	Plage de Puerto Rico, Grande Canarie	≤ 1,6 – 756,4	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 1,6 – 276,8	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	≤ 5,2 – 260,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 1,6 – 65,4	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 1,6 – 109,9	Sánchez Rodríguez et collab., 2015
Eau de mer	Grèce	7,4 – 10,7	Giokas et collab., 2005
Eau de mer	Épire, Grèce	≤ 13	Giokas et collab., 2004
Eau de mer	Okinawa, Japon	≤ 3 – 143	Tashiro et Kameda, 2013
Eau de mer	Plage de Mogushi, Japon	18 – 1 080	Sankoda et collab., 2015
Eau de mer	Plage de Wakamiya, Japon	11 – 210	Sankoda et collab., 2015
Eau de mer	Plage de Tsurugahama, Japon	20 – 700	Sankoda et collab., 2015
Eau de mer	Plage d'Otachimisaki, Japon	14 – 1 010	Sankoda et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl 4-méth	oxycinnamate (EHMC)	
Eau de mer	Tokyo, Japon	46 – 95	Tsui, Leung et collab., 2014b
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique et son bassin versant	≤ 5	Fisch et collab., 2017
Eau de mer	Oslofjord, Norvège	17,6 – 159,2	Langford et Thomas, 2008
Eau de mer	Plage de Huk, Norvège	30,6 - 44,9	Langford et Thomas, 2008
Eau de mer	Kalvøya, Norvège	20,1 - 63,1	Langford et Thomas, 2008
Eau de mer	Sandvika, Norvège	≤ 5 – 389,9	Langford et Thomas, 2008
Eau de mer	Ostøya, Norvège	≤ 5 – 93,6	Langford et Thomas, 2008
Eau de mer	Lac Jellyfish, Palaos	≤ 1,1	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 1,1	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ I,1 – 1 800	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ I,1 – 714	Bell et collab., 2017
		3 009 ± 206	Rodil et collab., 2009b
Eau de surface	Lac de Cospuden, Allemagne	150 ± 3	Moeder et collab., 2010
		≤ 16 – 20	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	≤ 16 – 33	Rodil et Moeder, 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Eau de surface	Rivière Elsterbecken, Allemagne	21 ± 3	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	≤ 16	Rodil et Moeder, 2008b
Eau de surface	Baie de Port Phillip, Australie	8,9 - 640	Allinson et collab., 2018
Eau de surface	Fleuve Itajaí-Açu, Brésil	≤ 8	Kirschner et collab., 2017
Eau de surface	Fleuve São Francisco, Brésil	≤ 8	Kirschner et collab., 2017
Eau de surface	Araraquara, Brésil	≤ 78,2	da Silva et collab., 2015
Eau de surface	Chine	810 – 3 430	Ma et collab., 2017b
Eau de surface	Lac, Xiamen, Chine	≤ 130	Mei et Huang, 2017
Eau de surface	Rivière, Xiamen, Chine	≤ 130	Mei et Huang, 2017
Eau de surface	Fleuve Jaune, Chine	790 – 1 620	Xue et collab., 2013
Eau de surface	Rivière Dongjiang, Chine	14,6 – 38,3	Li, Sang et collab., 2017
Equido surfaço	Espagne	8 – 36	Vila et collab., 2016
Lau de sullace		30 – 120	Vila et collab., 2017
Eau de surface	Fleuve Guadalete, Espagne	30 ± 1	Pintado-Herrera et collab., 2014
Eau de surface	Rivière Mijares, Espagne	162 ± 20	Chisvert et collab., 2017
		56	Román et collab., 2011
	Fleuve Turia, Espagne	≤ 190	Vidal et collab., 2010
Lau de Sullace		170 ± 20	Chisvert et collab., 2017
		220 ± 15	Benedé et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	2-éthylhexyl 4-métho	xycinnamate (EHMC)	
Eau de surface	Fleuve Júcar, Espagne	≤ 190	Vidal et collab., 2010
Eau de surface	Ames, Iowa, États-Unis	31 – 35	Trujillo-Rodriguez et collab., 2018
Eau de surface	Rivière Sturla, Italie	10 ± 7	Magi et collab., 2012
Eau de surface	Santa Margherita, Italie	≤ 25 – 27	Nguyen et collab., 2011
Eau de surface	San Fruttuoso, Italie	≤ 25 – 83	Nguyen et collab., 2011
Eau de surface	Camogli, Italie	25 – 47	Nguyen et collab., 2011
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3 – 3,9	Tashiro et Kameda, 2013
Eau de surface	Préfecture de Saitama, Japon	≤ 0,1 – 1 040	Kameda et collab., 2011
Eau de surface	Rivière Ave, Portugal	≤ 8,08 – 7 552	Sousa et collab., 2019
Eau de surface	Rivière Sousa, Portugal	≤ 2,67 – 4 105	Sousa et collab., 2019
Eau de surface	Rivière Nadiža-Soča, Slovénie	≤ 54	Cuderman et Heath, 2007
Eau de surface	Rivière Kolpa, Slovénie	88	Cuderman et Heath, 2007
Eau de surface	Lac de Rakitna, Slovénie	92	Cuderman et Heath, 2007
Eau de surface	Lac de Bohinj, Slovénie	≤ 110	Cuderman et Heath, 2007
Eau de surface	Lac Šobec, Slovénie	≤ 110	Cuderman et Heath, 2007
Eau de surface	Lac de Bled, Slovénie	≤ 110	Cuderman et Heath, 2007
Eau de surface	Lac de Bakovci, Slovénie	≤ 110	Cuderman et Heath, 2007
Eau de surface	Rivière Glatt, Suisse	6	Fent, Zenker et collab., 2010
Eau de surface	Lac de Greifen, Suisse	≤ 2	Balmer et collab., 2005
Matrice	Localisation	Concentration (ng/l)	Référence
----------------	-------------------------------	-------------------------	----------------------------------
	2-éthylhexyl 4-métho	xycinnamate (EHMC)	
	Loo de Zurich Suizes	≤ 2 – 7	Balmer et collab., 2005
Eau de surface	Lac de Zulicii, Suisse	≤ 2 – 26	Poiger et collab., 2004
Eau de surface	Lac Hüttnersee, Suisse	3 – 5	Balmer et collab., 2005
Eau de surface	Lac Jorisee, Suisse	≤ 2	Balmer et collab., 2005
Eau de surface	Lac Hüttnersee, Suisse	≤ 2 – 19	Poiger et collab., 2004
Eau de surface	Bangkok, Thaïlande	88 – 95	Tsui, Leung et collab., 2014b
	Octocryle	ène (OC)	
Eau de mer	Arctique	26 – 31	Tsui, Leung et collab., 2014b
Eau de mer	Lac Bay, Bonaire	≤ 20 – 1 950	Schaap et Slijkerman, 2018
Eau de mer	Mer de Chine méridionale	2,15 – 71,9	Tsui et collab., 2019
Eau de mer	Shenzhen, Chine	≤ 10,61 – 16,95	Li, Law et collab., 2018
Fou do mor	Hong Kong, Chine	106 – 6 812	Tsui, Leung et collab., 2014b
Lau de mei		11,5 – 63,6	Li, Sang et collab., 2017
Eau de mer	Shantou, Chine	75 – 107	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	36 – 102	Tsui, Leung et collab., 2014b
Eau de mer	Espagne	1 100 – 171 000	Vila et collab., 2016
Eau de mer	Espagne	14 – 79 000	Vila et collab., 2017
Eau de mer	Rio San Pedro, Espagne	49 ± 3	Pintado-Herrera et collab., 2014
Eau de mer	Plage de Bellreguard, Espagne	≤ 3 000	Vidal et collab., 2010

Matrice	Localisation	Concentration (ng/l)	Référence
	Octocryl	ène (OC)	
Eau de mer	Plage de Santa Pola, Espagne	≤ 3 000	Vidal et collab., 2010
Eau de mer	Plage de Puçol, Espagne	745 ± 20	Chisvert et collab., 2017
Equida mar	Plage de Patacona, Espagne	149 ± 5	Chisvert et collab., 2017
Lau de mei	riage de ralacolia, Espagile	406 ± 20	Benedé et collab., 2016
Eau de mer	Plage de Postiguet, Espagne	≤ 5,9	Román et collab., 2011
Eau de mer	Plage de Santa Cristina, Espagne	≤ 3	Rodil, Quintana et collab., 2008
Eau de mer	Plage de Santa Maria del Mar, Espagne	0,1 ± 0,01	Pintado-Herrera et collab., 2013
Eau de mer	Majorque, Espagne	≤ 2 500	Suárez et collab., 2016
Eau de mer	Plage de Santa Ponsa, Majorque, Espagne	98 ± 3	Benedé et collab., 2014b
Eau de mer		103 ± 2	Benedé et collab., 2014b
Eau de mer (fraction particulaire)	Plage de Pinedo, Espagne	≤ 91	Benedé et collab., 2014a
Eau de mer (fraction totale)		≤ 91	Benedé et collab., 2014a
Fou do mor		102 ± 5	Benedé et collab., 2014b
Eau de mei		≤ 3 000	Vidal et collab., 2010
Eau de mer (fraction particulaire)	- Plage de la Malva-Rosa, Espagne	182 ± 14	Benedé et collab., 2014a
Eau de mer (fraction totale)		317 ± 2	Benedé et collab., 2014a

Matrice	Localisation	Concentration (ng/l)	Référence
	Octocryl	ène (OC)	
Eau de mer (fraction particulaire)	Diago do Dolmiro, Mojorquo, Fonogno	70 ± 30	Benedé et collab., 2014a
Eau de mer (fraction totale)	- Flage de Faimira, Majorque, Espagne	260 ± 30	Benedé et collab., 2014a
Eau de mer	New York, États-Unis	117 – 128	Tsui, Leung et collab., 2014b
Eau de mer	Los Angeles, États-Unis	145 – 377	Tsui, Leung et collab., 2014b
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 25 – 382	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 25 – 77	Bratkovics et collab., 2015
Fou do mor	Folly Beach, Caroline du Sud, États-Unis	< 25 – 3 730	Bratkovics et collab., 2015
Eau de mei		≤ 25 – 1 409	Bratkovics et Sapozhnikova, 2011
Eau de mer	Chesapeake Bay, Maryland, États-Unis	11,9 – 43,7	He et collab., 2019a
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	0,3 – 29,1	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	0,3 – 25,4	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,3 – 45,5	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 9,3 – 359,1	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	61,2 – 973,1	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	30,7 – 766,7	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	37,8 – 1 324,9	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 2,8 – 183,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 2,8 - 768,5	Sánchez Rodríguez et collab., 2015

Matrice	Localisation	Concentration (ng/l)	Référence
	Octocryle	ène (OC)	
Eau de mer	Plage Foce, Italie	19 – 32	Magi et collab., 2012
Eau de mer	Tokyo, Japon	87 – 108	Tsui, Leung et collab., 2014b
Eau de mer	Okinawa, Japon	≤ 3 – 79	Tashiro et Kameda, 2013
Eau de mer	Mer Méditerranée	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Noire	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	≤ 5	Orlikowska et collab., 2015
Eau de mer	Mer Baltique et son bassin versant	5,3 – 30,8	Fisch et collab., 2017
Eau de mer	Oslofjord, Norvège	≤ 5 – 12,5	Langford et Thomas, 2008
Eau de mer	Plage de Huk, Norvège	≤ 5 – 29,9	Langford et Thomas, 2008
Eau de mer	Kalvøya, Norvège	≤ 5 – 105,1	Langford et Thomas, 2008
Eau de mer	Sandvika, Norvège	≤ 5 – 7 301	Langford et Thomas, 2008
Eau de mer	Ostøya, Norvège	≤ 5 – 58,5	Langford et Thomas, 2008
Eau de mer	Lac Jellyfish, Palaos	≤ 1,3 – 541	Bell et collab., 2017
Eau de mer	Lac Clear, Palaos	≤ 1,3 – 241	Bell et collab., 2017
Eau de mer	Lac Ngermeuangel, Palaos	≤ I,3 – 303	Bell et collab., 2017
Eau de mer	Océan Pacifique, Palaos	≤ I,3	Bell et collab., 2017
Eau de surface	Étang Bagger, Allemagne	73 – 126	Rodil et Moeder, 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	Octocry	lène (OC)	
		4 381 ± 539	Rodil et collab., 2009b
Eau de surface	Lac de Cospuden, Allemagne	3 052 – 4 319	Moeder et collab., 2010
		10 – 250	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 7	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	16 ± 1,2	Rodil et Moeder, 2008b
Eau de surface	Araraquara, Brésil	≤ 19,3	da Silva et collab., 2015
Eau de surface	Guangzhou, Chine	≤ 2 – 29	Liu, Liu et collab., 2010
Eau de surface	Rivière Dongjiang, Chine	≤ 3,0 – 19,2	Li, Sang et collab., 2017
Equido surfaço	Espagne	35 – 323 000	Vila et collab., 2016
Lau de sullace		45 – 258 000	Vila et collab., 2017
Fou do surfaço	Fleuve Turia, Espagne	≤ 3 000	Vidal et collab., 2010
Lau de sullace		206 ± 20	Chisvert et collab., 2017
Fou do surfaço	Fleuve Turia, Espagne	≤ 1,8	Román et collab., 2011
Lau de sullace		164 ± 2	Benedé et collab., 2016
Eau de surface	Fleuve Júcar, Espagne	≤ 3 000	Vidal et collab., 2010
Eau de surface	Rivière Mijares, Espagne	224 ± 20	Chisvert et collab., 2017
Eau de surface	Rivière Mero, Espagne	≤ 3	Rodil, Quintana et collab., 2008
Eau de surface	Fleuve Guadalete, Espagne	32 ± 1	Pintado-Herrera et collab., 2014
Eau de surface	Ames, Iowa, États-Unis	≤ 70	Trujillo-Rodriguez et collab., 2018

Matrice	Localisation	Concentration (ng/l)	Référence
	Octocryle	ène (OC)	
Eau de surface	Rivière Sturla, Italie	11 – 112	Magi et collab., 2012
Eau de surface	Préfecture de Saitama, Japon	≤ 0,3 – 14	Kameda et collab., 2011
Eau de surface	Rivière Shirahi, Okinawa, Japon	≤ 3 – 8,1	Tashiro et Kameda, 2013
Eau de surface	Rivière Nadiža-Soča, Slovénie	35	Cuderman et Heath, 2007
Eau de surface	Rivière Kolpa, Slovénie	34	Cuderman et Heath, 2007
Eau de surface	Lac de Rakitna, Slovénie	≤ 17	Cuderman et Heath, 2007
Eau de surface	Lac de Bohinj, Slovénie	≤ 17	Cuderman et Heath, 2007
Eau de surface	Lac Šobec, Slovénie	≤ 17	Cuderman et Heath, 2007
Eau de surface	Lac de Bled, Slovénie	31	Cuderman et Heath, 2007
Eau de surface	Lac de Bakovci, Slovénie	≤ 17	Cuderman et Heath, 2007
	Lac de Zurich, Suisse	≤ 2 − 3	Balmer et collab., 2005
Eau de sullace		≤ 2	Poiger et collab., 2004
Equido ourfoco	Lac Hüttnersee, Suisse	≤ 2 – 27	Poiger et collab., 2004
Eau de sullace		≤ 2	Balmer et collab., 2005
Eau de surface	Lac de Greifen, Suisse	≤ 2 − 5	Balmer et collab., 2005
Eau de surface	Lac Jorisee, Suisse	≤ 2	Balmer et collab., 2005
Eau de surface	Bangkok, Thaïlande	153 – 205	Tsui, Leung et collab., 2014b
Eau interstitielle	Sancti Petri, Espagne	0,1 – 0,4	Pintado-Herrera et collab., 2013

Matrice	Localisation	Concentration (ng/l)	Référence
	Acide 2-phénylbenzimida	zole-5-sulfonique (PBS	SA)
Eau de mer	Plage de Santa Cristina, Espagne	≤ 0,3 – 42	Rodil, Quintana et collab., 2008
Eau de mer	Grèce	≤ 300	Giokas et collab., 2005
Eau de mer	Mer Méditerranée	≤ 1	Orlikowska et collab., 2015
Eau de mer	Mer Noire	1,8 ± 0,7	Orlikowska et collab., 2015
Eau de mer	Mer Baltique	1,5 ± 0,7	Orlikowska et collab., 2015
Eau de mer	Estuaire de la mer Baltique	29 ± 38,9	Orlikowska et collab., 2015
Eau de surface	Fleuve Rhin, Allemagne	48 – 3 240	Wick et collab., 2010
Eau de surface	Rivière Mero, Espagne	≤ 0,3 – 34	Rodil, Quintana et collab., 2008
Eau de surface	Rivière Olona, Italie	167	Castiglioni et collab., 2018
Eau de surface	Rivière Seveso, Italie	517	Castiglioni et collab., 2018
Eau de surface	Rivière Lambro, Italie	105 – 294	Castiglioni et collab., 2018
Eau de surface	Mer Baltique et son bassin versant	1,8 - 836,3	Fisch et collab., 2017
Eau de surface	République tchèque	11 – 500	Grabicova et collab., 2013
	Acide phényldibenzimidaz	cole tétrasulfonique (Pl	DT)
Eau de mer	Plage de Santa Cristina, Espagne	≤ 2,1	Rodil, Quintana et collab., 2008
Eau de surface	Rivière Mero, Espagne	≤ 2,1	Rodil, Quintana et collab., 2008
	Étocrylè	ne (Eto)	
Equide surface	Espagne	≤ 0,15	Vila et collab., 2017
Lau de sullace	Lohadine	≤ 3,8	Vila et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	Étocrylè	ne (Eto)	
Eau de surface	Ames, Iowa, États-Unis	≤ 41	Trujillo-Rodriguez et collab., 2018
Eau de surface	Préfecture de Saitama, Japon	≤ 0,3	Kameda et collab., 2011
	Butyl-méthoxy diben:	zoylméthane (BMDM)	·
Eau de mer	Arctique	18 – 70	Tsui, Leung et collab., 2014b
Eau de mer	Mer de Chine méridionale	1,37 – 145,24	Tsui et collab., 2019
Eau de mer	Hong Kong, Chine	24 – 721	Tsui, Leung et collab., 2014b
Eau de mer	Shantou, Chine	53 – 100	Tsui, Leung et collab., 2014b
Eau de mer	Chaozhou, Chine	≤ 0,13	Tsui, Leung et collab., 2014b
Eau de mer	Plage de Santa Cristina, Espagne	≤ 0,8	Rodil, Quintana et collab., 2008
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 1 – 425	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 1 – 158	Bratkovics et collab., 2015
Fou do mor	Folly Beach, Caroline du Sud, États-Unis	< 1 – 1 298	Bratkovics et collab., 2015
Eau de mei		62 – 321	Bratkovics et Sapozhnikova, 2011
Eau de mer	Plage de Santa Cristina, Espagne	≤ 0,8	Rodil, Quintana et collab., 2008
Eau de mer	Myrtle Beach, Caroline du Sud, États-Unis	< 1 – 425	Bratkovics et collab., 2015
Eau de mer	North Inlet, Caroline du Sud, États-Unis	< 1 – 158	Bratkovics et collab., 2015
Fou de mor	Fally Baach, Carolina dy Gud Étata Uni-	< 1 – 1 298	Bratkovics et collab., 2015
Eau de mer	Folly Beach, Caroline du Sud, Etats-Unis	62 – 321	Bratkovics et Sapozhnikova, 2011
Eau de mer	New York, États-Unis	70 – 87	Tsui, Leung et collab., 2014b

Matrice	Localisation	Concentration (ng/l)	Référence
	Butyl-méthoxy diben	zoylméthane (BMDM)	
Eau de mer	Los Angeles, États-Unis	67 – 109	Tsui, Leung et collab., 2014b
Eau de mer	Waikiki, Oahu, Hawaii, États-Unis	≤ 3	Mitchelmore et collab., 2019
Eau de mer	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 3	Mitchelmore et collab., 2019
Eau de mer	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 3	Mitchelmore et collab., 2019
Eau de mer	Plage de Maspalomas, Grande Canarie	≤ 2 − 188,4	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Puerto Rico, Grande Canarie	35,6 – 1 163,2	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage d'Amadores, Grande Canarie	≤ 6,7 – 792	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Mogán, Grande Canarie	19,8 – 1 770,3	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Alcaravaneras, Grande Canarie	≤ 2,0 – 314,3	Sánchez Rodríguez et collab., 2015
Eau de mer	Plage de Las Canteras, Grande Canarie	≤ 2,0 – 737,1	Sánchez Rodríguez et collab., 2015
Eau de mer	Grèce	≤ 1 270	Giokas et collab., 2005
Eau de mer	Épire, Grèce	≤ 24	Giokas et collab., 2004
Eau de mer	Tokyo, Japon	78 – 104	Tsui, Leung et collab., 2014b
Fou do surfaço	Las de Cespuden Allemagne	2 431 ± 220	Rodil et collab., 2009b
Lau de sullace	Lac de Cospuden, Allemagne	≤ 63	Rodil et Moeder, 2008b
Eau de surface	Étang Bagger, Allemagne	≤ 63	Rodil et Moeder, 2008b
Eau de surface	Rivière Elsterbecken, Allemagne	≤ 63	Rodil et Moeder, 2008b
Eau de surface	Rivière Parthe, Allemagne	≤ 63	Rodil et Moeder, 2008b
Eau de surface	Rivière Mero, Espagne	≤ 0,8	Rodil et collab., 2008b

Matrice	Localisation	Concentration (ng/l)	Référence
	Butyl-méthoxy dibenz	zoylméthane (BMDM)	
Eau de surface	Lacs Fort Gibson, Grand, Kaw, Keystone, Oologah et Skiatook, Oklahoma, États-Unis	< 300	Layton, 2015
Eau de surface	Lac de Zurich, Suisse	≤ 20	Poiger et collab., 2004
Eau de surface	Lac Hüttnersee, Suisse	≤ 20 – 24	Poiger et collab., 2004
Eau de surface	Bangkok, Thaïlande	36 – 38	Tsui, Leung et collab., 2014b
	Menthyl anth	ranilate (MA)	
Eau de mer		≤ 0,045	Vila et collab., 2017
Eau de mer	Espagne	≤ 5,8	Vila et collab., 2016
Fou do surfoco		≤ 0,045	Vila et collab., 2017
Lau de Sullace		≤ 5,8	Vila et collab., 2016
Eau de surface	Ames, Iowa, États-Unis	≤ 5 – 12	Trujillo-Rodriguez et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-1 (BP-1)	
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 4,6	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 4,6	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 100	Jeon, Chung et collab., 2006
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 5,5	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Guadalquivir, Espagne	≤ 15,5	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Rivière Manzanares, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerranéenne, Piles, Espagne	≤ 0,21	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivières Saginaw et Detroit, États-Unis	0,259 – 0,607	Zhang, Ren et collab., 2011
Sédiments	Tokyo, Japon	2,7 – 14,6	Tsui, Leung et collab., 2015

Tableau 12 – Concentrations en filtres UV mesurées dans les sédiments, les sables et les matières en suspension

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-1 (BP-1)	
Sédiments	Singapour	≤ ld – 2,5	Mao, You et collab., 2018
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Singapour	≤ ld – 119,5	Mao, You et collab., 2018
	Benzophén	one-2 (BP-2)	
Sédiments	Rivière Songhua, Chine	≤ 0,22	Zhang, Ren et collab., 2011
Sédiments	Rivières Saginaw et Detroit, États-Unis	≤ 0,22 – 2,65	Zhang, Ren et collab., 2011
Sédiments	Singapour	≤ ld – 6,2	Mao, You et collab., 2018
Matières en suspension	Singapour	≤ ld – 2 773,9	Mao, You et collab., 2018
	Benzophén	one-3 (BP-3)	
Sédiments	Lac de Cospuden, Allemagne	≤ 20	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	≤ 20	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	≤ 20	Rodil et Moeder, 2008a
Sédiments	Baie de Port Phillip, Australie	≤ 0,05	Allinson, Kameda et collab., 2018
Sédiments	Baie de Concepción, Chili	< 0,4	Barón, Gago-Ferrero et collab., 2013

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-3 (BP-3)	
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 0,4 - 1,42	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 0,4 - 2,96	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 0,4 - 1,05	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 0,4	Barón, Gago-Ferrero et collab., 2013
Sédiments	Rivière Songhua, Chine	0,272 – 0,545	Zhang, Ren et collab., 2011
Sédiments	Baie de Laizhou, Chine	< 30	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 30	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 30	Apel, Tang et collab., 2018
Sédiments	Côte ouest de la Colombie	< 0,4 - 2,52	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 0,4 - 4,85	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 0,4 - 5,38	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 0,5	Jeon, Chung et collab., 2006
Sédiments	Fleuve Guadalquivir, Espagne	≤ 0,8	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 0,8 – 27	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophé	none-3 (BP-3)	
Sédiments	Sancti Petri, Espagne	26 – 47	Pintado-Herrera, González-Mazo et collab., 2013
Sédiments	Rivière Manzanares, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerranéenne, Piles, Espagne	≤ 0,28	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivières Saginaw et Detroit, États-Unis	0,728 – 4,66	Zhang, Ren et collab., 2011
Sédiments	Chesapeake Bay, Maryland, États-Unis	6,9 – 10,8	He, Hain et collab., 2019
Sédiments	Mer Adriatique, Italie	≤ 0,1 – 0,23	Combi, Pintado-Herrera et collab., 2016
Sédiments	Préfecture de Saitama, Japon	≤ 0,05	Kameda, Kimura et collab., 2011
Sédiments	Oslofjord, Norvège	≤5	Langford, Reid et collab., 2015
Sédiments	Lac Mjøsa, Norvège	≤5	Langford, Reid et collab., 2015
Sédiments	Lac Jellyfish, Palaos	≤ ld – 15	Bell et collab., 2017
Sédiments	Lac Clear, Palaos	≤ ld	Bell et collab., 2017
Sédiments	Lac Ngermeuangel, Palaos	≤ ld	Bell et collab., 2017
Sédiments	Singapour	1,0 – 3,9	Mao, You et collab., 2018
Sable	Galice, Espagne	≤ 0,052 - 33	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	7,5	Vila, Llompart et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-3 (BP-3)	
Sable	Majorque, Espagne	≤ 0,052 – 0,85	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	≤ 0,55	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	3,3 ± 0,5	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	9,2 ± 0,4	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	$10,2 \pm 0,4$	Benedé, Chisvert et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,12 - 0,72	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,12 - 0,75	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,12 - 4,49	Mitchelmore, He et collab., 2019
Sable	Portugal	≤ 0,052 – 2,2	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 4,6	Capela, Vila et collab., 2019
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Singapour	68,9 – 2 107,6	Mao, You et collab., 2018
	Benzophén	one-6 (BP-6)	
Sédiments	Rivière Manzanares, Espagne	6,1 ± 0,3	Sánchez-Brunete, Miguel et collab., 2011

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-6 (BP-6)	
Sédiments	Rivière Jarama, Espagne	≤ 0,15	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,15	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	1,4 ± 0,07	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	1,2 ± 0,1	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerrannéenne, Piles, Espagne	≤ 0,15	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Singapour	0,8 – 2,3	Mao, You et collab., 2018
Matières en suspension	Singapour	23,8 – 657,8	Mao, You et collab., 2018
	Benzophén	one-8 (BP-8)	
Sédiments	Rio Palmital, Brésil	≤ 2,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Atuba, Brésil	≤ 2,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Belém, Brésil	≤ 9,3	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rivière Iguaçu, Brésil	≤ 9,3	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Hong Kong, Chine	0,8 - 62,2	Tsui, Leung et collab., 2015
Sédiments	Rivière Songhua, Chine	≤ 0,14	Zhang, Ren et collab., 2011
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	0,5 – 2,14	Jeon, Chung et collab., 2006
Sédiments	Rivière Manzanares, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011

Matrice	Localisation	Concentration (ng/g)	Référence		
	Benzophén	one-8 (BP-8)			
Sédiments	Rivière Guadarrama, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011		
Sédiments	Rivière Lozoya, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011		
Sédiments	Côte méditerranéenne, Piles, Espagne	≤ 0,14	Sánchez-Brunete, Miguel et collab., 2011		
Sédiments	Rivières Saginaw et Detroit, États-Unis	0,133 – 0,796	Zhang, Ren et collab., 2011		
Sédiments	Tokyo, Japon	1,3 – 14,1	Tsui, Leung et collab., 2015		
Sédiments	Singapour	1,0 - 6,7	Mao, You et collab., 2018		
Matières en suspension	Singapour	≤ ld – 928,9	Mao, You et collab., 2018		
	Benzophénone-12 (BP-12)				
Sédiments	Baie de Laizhou, Chine	< 74	Apel, Tang et collab., 2018		
Sédiments	Golfe de Bohai, Chine	< 22	Apel, Tang et collab., 2018		
Sédiments	Mer Jaune, Chine	< 22	Apel, Tang et collab., 2018		
	4-hydroxybenzo	ophénone (4HBP)			
Sédiments	Rivière Iguaçu, Brésil	≤ 8	Mizukawa, Molins-Delgado et collab., 2017		
Sédiments	Baie de Concepción, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013		
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013		
Sédiments	Estuaire de Caleta Lenga, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013		
Sédiments	Fleuve Biobio, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013		
Sédiments	Baie de Coronel, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013		
Sédiments	Rivière Songhua, Chine	≤ 0,14	Zhang, Ren et collab., 2011		

Matrice	Localisation	Concentration (ng/g)	Référence
	4-hydroxybenzo	phénone (4HBP)	
Sédiments	Côte ouest de la Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	18,38	Jeon, Chung et collab., 2006
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 2,4 – 21	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Guadalquivir, Espagne	≤ 2,8	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Rivière Manzanares, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerrannéenne, Piles, Espagne	≤ 0,23	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivières Saginaw et Detroit, États-Unis	0,312 – 0,951	Zhang, Ren et collab., 2011
Sédiments	Lac Jellyfish, Palaos	≤ ld – 526	Bell et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	4-hydroxybenzo	phénone (4HBP)	
Sédiments	Lac Clear, Palaos	12 – 475	Bell et collab., 2017
Sédiments	Lac Ngermeuangel, Palaos	28 – 241	Bell et collab., 2017
Sédiments	Singapour	2,1 – 9,3	Mao, You et collab., 2018
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,4	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Singapour	88,2 – 1 740,6	Mao, You et collab., 2018
	2,3,4-trihydroxy be	enzophénone (THB)	
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	≤ 100	Jeon, Chung et collab., 2006
Sédiments	Baie de Concepción, Chili	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Côte ouest de la Colombie	< 0,8	Barón, Gago-Ferrero et collab., 2013

Matrice	Localisation	Concentration (ng/g)	Référence
	4,4'-Dihydroxyben:	zophénone (4DHB)	
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 0,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 2,4	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Guadalquivir, Espagne	≤ 2,8	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Singapour	0,3 – 9,1	Mao, You et collab., 2018
Matières en suspension	Riu Sec, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Singapour	6,9 – 194,5	Mao, You et collab., 2018
	Benzhyd	irol (BH)	
Sédiments	Fleuves Han, Kum, Yeongsan et Nakdong, Corée	0,53	Jeon, Chung et collab., 2006

Matrice	Localisation	Concentration (ng/g)	Référence	
	Ethyl PAB/	A (Et-PABA)		
Sédiments	Rio Palmital, Brésil	≤ 1,9 – 151,8	Mizukawa, Molins-Delgado et collab., 2017	
Sédiments	Rio Atuba, Brésil	≤ 1,9 – 76,8	Mizukawa, Molins-Delgado et collab., 2017	
Sédiments	Rio Belém, Brésil	≤ 1,9 – 141,6	Mizukawa, Molins-Delgado et collab., 2017	
Sédiments	Rivière Iguaçu, Brésil	≤ 2,5	Mizukawa, Molins-Delgado et collab., 2017	
Sédiments	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Fleuve Besòs, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Rivière Ripoll, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Riu Sec, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017	
Octyl diméthyl PABA (OD-PABA)				
Sédiments	Lac de Cospuden, Allemagne	≤ 2	Rodil et Moeder, 2008a	
Sédiments	Étang Bagger, Allemagne	≤ 2	Rodil et Moeder, 2008a	
Sédiments	Lac Prossdorf, Allemagne	≤ 2	Rodil et Moeder, 2008a	
Sédiments	Baie de Port Phillip, Australie	≤ 0,05	Allinson, Kameda et collab., 2018	

Matrice	Localisation	Concentration (ng/g)	Référence
	Octyl diméthyl F	PABA (OD-PABA)	
Sédiments	Rio Palmital, Brésil	≤ 0,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Atuba, Brésil	≤ 0,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Belém, Brésil	≤ 0,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rivière Iguaçu, Brésil	≤ 0,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Baie de Concepción, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Laizhou, Chine	< 1	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 1	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 1	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	1,5 – 150	Tsui, Leung et collab., 2015
Sédiments	Côte ouest de la Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 0,7	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 0,5 – 5,2	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	Octyl diméthyl F	PABA (OD-PABA)	
Sédiments	Rivière Cardaner, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Guadalquivir, Espagne	≤ 0,5	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Fleuve Lez, France	≤ 1,5	Amine, Gomez et collab., 2012
Sédiments	Mer Méditerranée, France	≤ 1,5	Amine, Gomez et collab., 2012
Sédiments	Préfecture de Saitama, Japon	≤ 0,05	Kameda, Kimura et collab., 2011
Sédiments	Tokyo, Japon	0,8 – 13,9	Tsui, Leung et collab., 2015
Sédiments	Liban	≤ 1,5 – 17	Amine, Gomez et collab., 2012
Sédiments	Oslofjord, Norvège	≤ 4	Langford, Reid et collab., 2015
Sédiments	Lac Mjøsa, Norvège	≤ 5	Langford, Reid et collab., 2015
Sable	Îles Canaries, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	$0,52 \pm 0,05$	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	1,7 ± 0,2	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	10,2 ± 0,8	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	$5,8 \pm 0,3$	Benedé, Chisvert et collab., 2018
Sable	Galice, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,01	Mitchelmore, He et collab., 2019

Matrice	Localisation	Concentration (ng/g)	Référence
	Octyl diméthyl	PABA (OD-PABA)	
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,01	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,01	Mitchelmore, He et collab., 2019
Sable	Portugal	≤ 0,001	Vila, Llompart et collab., 2018
Matières en suspension	Fleuve Besòs, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 5,3	Molins-Delgado, Távora et collab., 2017
Sédiments	Lac de Cospuden, Allemagne	≤ 56	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	≤ 56	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	≤ 56	Rodil et Moeder, 2008a
Sédiments	Rivières Sprée et Havel, Allemagne	1 – 4	Ricking, Schwarzbauer et collab., 2003
Sédiments	Baie de Port Phillip, Australie	≤ 0,05 – 1,2	Allinson, Kameda et collab., 2018
Sédiments	Rio Palmital, Brésil	≤ 27 – 45,7	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Atuba, Brésil	≤ 8 – 49,3	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Belém, Brésil	≤ 8 – 43,5	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rivière Iguaçu, Brésil	≤ 27	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Baie de Concepción, Chili	< 1,1	Barón, Gago-Ferrero et collab., 2013

Matrice	Localisation	Concentration (ng/g)	Référence
	3-(4-méthylbenzylide	ène) camphor (4-MBC)	
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 1,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 1,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 1,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 1,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Laizhou, Chine	< 120	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 120	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 120	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	≤ 7,33	Tsui, Leung et collab., 2015
Sédiments	Côte ouest de la Colombie	< 1,1 – 7,90	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 1,1 – 17,2	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 1,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 8	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Guadalquivir, Espagne	≤ 8	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Fleuve Besòs, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Préfecture de Saitama, Japon	≤ 0,05	Kameda, Kimura et collab., 2011

Matrice	Localisation	Concentration (ng/g)	Référence
	3-(4-méthylbenzylidè	ene) camphor (4-MBC)	
Sédiments	Tokyo, Japon	≤ 7,33	Tsui, Leung et collab., 2015
Sable	Galice, Espagne	2,2 – 206	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	87	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	0,066 – 1,0	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	4,9 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	$6,7 \pm 0,4$	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	16,2 ± 0,5	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	13,8 ± 0,7	Benedé, Chisvert et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,01	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,01	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,12	Mitchelmore, He et collab., 2019
Sable	Portugal	0,11 – 1,2	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 7,6	Capela, Vila et collab., 2019
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl	salicylate (EHS)	
Sédiments	Lac de Cospuden, Allemagne	≤ 5	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	≤ 5	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	≤5	Rodil et Moeder, 2008a
Sédiments	Baie de Port Phillip, Australie	≤ 0,1	Allinson, Kameda et collab., 2018
Sédiments	Baie de Laizhou, Chine	< 20	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 70	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 20	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	≤ 4,26	Tsui, Leung et collab., 2015
Sédiments	Rivière Manzanares, Espagne	7,5 ± 0,3	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	20,0 ± 0,5	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	5,3 ± 0,2	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	≤ 0,11	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	3,5 ± 0,2	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerrannéenne, Piles, Espagne	13,3 ± 0,4	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Tokyo, Japon	≤ 4,26	Tsui, Leung et collab., 2015
Sédiments	Préfecture de Saitama, Japon	≤ 0,1	Kameda, Kimura et collab., 2011
Sable	Galice, Espagne	0,93 – 609	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	83	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	2,7 - 6,9	Vila, Llompart et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl s	alicylate (EHS)	
Sable	Plage de Patacona, Espagne	4,7 ± 0,4	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	6,9 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	7,5 ± 0,5	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	5,9 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 2,42 – 7,96	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 2,42 – 7,82	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 2,42 - 42,83	Mitchelmore, He et collab., 2019
Sable	Porto, Portugal	≤ 0,15 – 20	Capela, Vila et collab., 2019
Sable	Portugal	0,67 – 1,8	Vila, Llompart et collab., 2018
	Benzyl sal	icylate (BS)	
Sédiments	Baie de Port Phillip, Australie	≤ 1	Allinson, Kameda et collab., 2018
Sédiments	Préfecture de Saitama, Japon	≤ 1	Kameda, Kimura et collab., 2011
Sable	Galice, Espagne	≤ 0,086 - 4,0	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	0,28	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	≤ 0,086	Vila, Llompart et collab., 2018
Sable	Portugal	≤ 0,086 - 0,69	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 0,76	Capela, Vila et collab., 2019
	Homosa	llate (HS)	
Sédiments	Lac de Cospuden, Allemagne	≤ 11	Rodil et Moeder, 2008a

Matrice	Localisation	Concentration (ng/g)	Référence
	Homos	alate (HS)	
Sédiments	Étang Bagger, Allemagne	≤ 11	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	≤ 11	Rodil et Moeder, 2008a
Sédiments	Baie de Laizhou, Chine	< 24	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 7	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 7	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	≤ 7,55	Tsui, Leung et collab., 2015
Sédiments	Rivière Manzanares, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Jarama, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Henares, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Guadarrama, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Rivière Lozoya, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Côte méditerrannéenne, Piles, Espagne	≤ 0,12	Sánchez-Brunete, Miguel et collab., 2011
Sédiments	Chesapeake Bay, Maryland, États-Unis	20 – 74,2	He, Hain et collab., 2019
Sédiments	Tokyo, Japon	≤ 7,55	Tsui, Leung et collab., 2015
Sédiments	Préfecture de Saitama, Japon	≤ 0,1 – 26	Kameda, Kimura et collab., 2011
Sable	Galice, Espagne	1,6 – 149	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	34	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	3,5 – 7,0	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	4,8 ± 0,2	Benedé, Chisvert et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	Homosa	llate (HS)	
Sable	Plage El Saler, Espagne	7,1 ± 0,5	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	10,1 ± 0,8	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	$7,4 \pm 0,4$	Benedé, Chisvert et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 2,42 – 9,08	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 2,42 – 5,86	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 2,42 – 38,84	Mitchelmore, He et collab., 2019
Sable	Portugal	0,34 – 1,1	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 25	Capela, Vila et collab., 2019
	Trolamine sal	icylate (TEAS)	
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,02	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,02	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,02	Mitchelmore, He et collab., 2019
	Isoamyl 4-métho	cycinnamate (IMC)	
Sédiments	Lac de Cospuden, Allemagne	≤ 4	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	≤ 4	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	≤ 4	Rodil et Moeder, 2008a
Sédiments	Baie de Laizhou, Chine	< 20	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 20	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 20	Apel, Tang et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	Isoamyl 4-métho	cycinnamate (IMC)	
Sédiments	Hong Kong, Chine	≤ 2,1	Tsui, Leung et collab., 2015
Sédiments	Tokyo, Japon	≤ 2,1	Tsui, Leung et collab., 2015
Sable	Galice, Espagne	≤ 0,01 - 0,09	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	2,6	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	≤ 0,01	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	≤ 0,02	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	1,1 ± 0,1	Benedé, Chisvert et collab., 2018
Sable	Plage de Javea, Espagne	6,9 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	6,5 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Portugal	≤ 0,01 – 0,14	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 0,37	Capela, Vila et collab., 2019
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Sédiments	Lac de Cospuden, Allemagne	21 ± 3	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	14 ± 4	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	34 ± 6	Rodil et Moeder, 2008a
Sédiments	Baie de Port Phillip, Australie	≤ 2 – 17,6	Allinson, Kameda et collab., 2018
Sédiments	Rio Palmital, Brésil	≤ 1,6 – 43	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Atuba, Brésil	≤ 1,6 – 121,2	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Belém, Brésil	≤ 5,3 – 166,8	Mizukawa, Molins-Delgado et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Sédiments	Rivière Iguaçu, Brésil	≤ 5,3 – 129,6	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Baie de Concepción, Chili	< 4,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 4,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 4,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 4,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 4,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Laizhou, Chine	< 16	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 16	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 16	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	0,6 – 447	Tsui, Leung et collab., 2015
Sédiments	Côte ouest de la Colombie	< 4,1 – 17,8	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 4,1 – 39,0	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 4,1 - 47,1	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 1,6 – 42	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Ruisseau de Rubi, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl 4-méth	noxycinnamate (EHMC)	
Sédiments	Fleuve Guadalquivir, Espagne	≤ 1,6 – 22,9	Gago-Ferrero, Díaz-Cruz et collab., 2015
Sédiments	Chesapeake Bay, Maryland, États-Unis	≤2	He, Hain et collab., 2019
Sédiments	Fleuve Lez, France	7,9 ± 1,2	Amine, Gomez et collab., 2012
Sédiments	Mer Méditerranée, France	1,6 – 2,5	Amine, Gomez et collab., 2012
Sédiments	Mer Adriatique, Italie	0,9 - 10,4	Combi, Pintado-Herrera et collab., 2016
Sédiments	Préfecture de Saitama, Japon	≤ 2 – 101	Kameda, Kimura et collab., 2011
Sédiments	Tokyo, Japon	0,3 – 54,5	Tsui, Leung et collab., 2015
Sédiments	Liban	45 ± 6	Amine, Gomez et collab., 2012
Sédiments	Rivière Otamiri, Nigeria	34 – 880	Arukwe, Eggen et collab., 2012
Sédiments	Oslofjord, Norvège	8,5 – 16,4	Langford, Reid et collab., 2015
Sédiments	Lac Mjøsa, Norvège	9,9 – 19,8	Langford, Reid et collab., 2015
Sédiments	Lac Jellyfish, Palaos	≤ ld – 59	Bell et collab., 2017
Sédiments	Lac Clear, Palaos	≤ ld	Bell et collab., 2017
Sédiments	Lac Ngermeuangel, Palaos	≤ ld	Bell et collab., 2017
Sable	Galice, Espagne	0,21 – 2,7	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	54	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	0,45 – 1,4	Vila, Llompart et collab., 2018
Sable	Plage de Patacona, Espagne	1,3 ± 0,1	Benedé, Chisvert et collab., 2018
Sable	Plage El Saler, Espagne	7,0 ± 0,3	Benedé, Chisvert et collab., 2018

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Sable	Plage de Javea, Espagne	14,0 ± 0,6	Benedé, Chisvert et collab., 2018
Sable	Plage de Maspalomas, îles Canaries, Espagne	5,5 ± 0,3	Benedé, Chisvert et collab., 2018
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,48	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,48	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,48 – 31,43	Mitchelmore, He et collab., 2019
Sable	Portugal	0,46 – 3,5	Vila, Llompart et collab., 2018
Sable	Porto, Portugal	≤ 0,15 – 8,2	Capela, Vila et collab., 2019
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Riu Sec, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017
	Octocry	lène (OC)	
Sédiments	Lac de Cospuden, Allemagne	61 ± 5	Rodil et Moeder, 2008a
Sédiments	Étang Bagger, Allemagne	63 ± 6	Rodil et Moeder, 2008a
Sédiments	Lac Prossdorf, Allemagne	93 ± 4	Rodil et Moeder, 2008a
Sédiments	Rio Palmital, Brésil	25,9 – 117	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rio Atuba, Brésil	≤ 7,3 – 322,2	Mizukawa, Molins-Delgado et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence
	Octocry	lène (OC)	
Sédiments	Rio Belém, Brésil	48,5 – 313,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Rivière Iguaçu, Brésil	≤ 7,3 – 160,8	Mizukawa, Molins-Delgado et collab., 2017
Sédiments	Baie de Concepción, Chili	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de San Vicente de Tagua Tagua, Chili	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Estuaire de Caleta Lenga, Chili	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Biobio, Chili	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Coronel, Chili	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Baie de Laizhou, Chine	< 84	Apel, Tang et collab., 2018
Sédiments	Golfe de Bohai, Chine	< 84	Apel, Tang et collab., 2018
Sédiments	Mer Jaune, Chine	< 84	Apel, Tang et collab., 2018
Sédiments	Hong Kong, Chine	0,04 – 15,6	Tsui, Leung et collab., 2015
Sédiments	Côte ouest de la Colombie	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Bocas de Ceniza et Ciénaga de Mallorquín, Colombie	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Magdalena, Colombie	< 9,9	Barón, Gago-Ferrero et collab., 2013
Sédiments	Fleuve Èbre et ses tributaires, Espagne	≤ 2,2 – 2 400	Gago-Ferrero et collab., 2011a
Sédiments	Fleuve Besòs, Espagne	226,6	Molins-Delgado, Távora et collab., 2017
Sédiments	Rivière Cardaner, Espagne	≤ 1,9	Molins-Delgado, Távora et collab., 2017
Sédiments	Fleuve Llobregat, Espagne	≤ 1,9 - 104,7	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/g)	Référence	
	Octocr	ylène (OC)		
Sédiments	Ruisseau de Rubi, Espagne	≤ 6,5 – 132,2	Molins-Delgado, Távora et collab., 2017	
Sédiments	Fleuve Guadalquivir, Espagne	≤ 1,6 – 22,9	Gago-Ferrero, Díaz-Cruz et collab., 2015	
Sédiments	Fleuve Guadalquivir, Espagne	≤ 2,2 - 22,5	Gago-Ferrero, Díaz-Cruz et collab., 2015	
Sédiments	Sancti Petri, Espagne	20 – 53	Pintado-Herrera, González-Mazo et collab., 2013	
Sédiments	Chesapeake Bay, Maryland, États-Unis	0,2-2,9	He, Hain et collab., 2019	
Sédiments	Fleuve Lez, France	32,8 ± 3,3	Amine, Gomez et collab., 2012	
Sédiments	Mer Méditerranée, France	≤2	Amine, Gomez et collab., 2012	
Sédiments	Mer Adriatique, Italie	0,8 - 40,7	Combi, Pintado-Herrera et collab., 2016	
Sédiments	Préfecture de Saitama, Japon	≤ 0,1 – 635	Kameda, Kimura et collab., 2011	
Sédiments	Tokyo, Japon	≤ 0,58	Tsui, Leung et collab., 2015	
Sédiments	Liban	128 ± 5	Amine, Gomez et collab., 2012	
Sédiments	Rivière Otamiri, Nigeria	2 – 5	Arukwe, Eggen et collab., 2012	
Sédiments	Oslofjord, Norvège	≤ 7 – 82,1	Langford, Reid et collab., 2015	
Sédiments	Lac Mjøsa, Norvège	≤7	Langford, Reid et collab., 2015	
Sédiments	Lac Jellyfish, Palaos	≤ ld – 222	Bell et collab., 2017	
Sédiments	Lac Clear, Palaos	≤ ld – 28	Bell et collab., 2017	
Sédiments	Lac Ngermeuangel, Palaos	≤ ld – 5	Bell et collab., 2017	
Sable	Galice, Espagne	31 – 454	Vila, Llompart et collab., 2018	
Sable	Îles Canaries, Espagne	670	Vila, Llompart et collab., 2018	
Matrice	Localisation	Concentration (ng/g)	Référence	
------------------------	---	-------------------------	---	--
	Octocry	lène (OC)		
Sable	Majorque, Espagne	2,9 – 20	Vila, Llompart et collab., 2018	
Sable	Plage de Patacona, Espagne	2,4 ± 0,1	Benedé, Chisvert et collab., 2018	
Sable	Plage El Saler, Espagne	4,6 ± 0,3	Benedé, Chisvert et collab., 2018	
Sable	Plage de Javea, Espagne	8,2 ± 0,4	Benedé, Chisvert et collab., 2018	
Sable	Plage de Maspalomas, îles Canaries, Espagne	11,0 ± 0,7	Benedé, Chisvert et collab., 2018	
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,12 – 27,54	Mitchelmore, He et collab., 2019	
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,12	Mitchelmore, He et collab., 2019	
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	0,90 – 10,48	Mitchelmore, He et collab., 2019	
Sable	Portugal	13 – 35	Vila, Llompart et collab., 2018	
Sable	Porto, Portugal	≤ 0,15 – 373	Capela, Vila et collab., 2019	
Matières en suspension	Fleuve Besòs, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Rivière Ripoll, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Riu Sec, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Ruisseau de Rubi, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Fleuve Llobregat, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Matières en suspension	Rivière Cardaner, Espagne	≤ 6,5	Molins-Delgado, Távora et collab., 2017	
Étocrylène (Eto)				
Sédiments	Baie de Port Phillip, Australie	≤ 0,1	Allinson, Kameda et collab., 2018	
Sédiments	Préfecture de Saitama, Japon	≤ 0,1 – 15	Kameda, Kimura et collab., 2011	

Matrice	Localisation	Concentration (ng/g)	Référence
	Étocry	ène (Eto)	
Sable	Galice, Espagne	≤ 0,045	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	≤ 0,045	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	≤ 0,045	Vila, Llompart et collab., 2018
Sable	Portugal	≤ 0,045	Vila, Llompart et collab., 2018
	Butyl-méthoxy dibe	nzoylméthane (BMDM)	
Sédiments	Hong Kong, Chine	4,3 – 42,9	Tsui, Leung et collab., 2015
Sédiments	Tokyo, Japon	2,5 - 64,5	Tsui, Leung et collab., 2015
Sable	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,48 – 7,99	Mitchelmore, He et collab., 2019
Sable	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,48	Mitchelmore, He et collab., 2019
Sable	Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 0,48 – 7,73	Mitchelmore, He et collab., 2019
	Menthyl ant	hranilate (MA)	
Sable	Galice, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Îles Canaries, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Majorque, Espagne	≤ 0,001	Vila, Llompart et collab., 2018
Sable	Portugal	≤ 0,001	Vila, Llompart et collab., 2018

Matrice	Localisation	Concentration (ng/)	Référence
	Benzopl	hénone (BP)	
Affluents municipaux	Nogpur Indo	46 000 – 156 000	Arehana at collab 2017
Effluents municipaux	nagpui, inue	23 000 – 88 000	
Effluents municipaux	Préfecture de Saitama, Japon	8 – 74	Kameda et collab., 2011
Effluents municipaux	Lisbonne, Portugal	2 200 – 2 500	Almeida et collab., 2013
	Benzophé	none-1 (BP-1)	·
Affluents municipaux	Allemagne	43 – 488	Wick et collab., 2010
Affluents municipaux	Hong Kong, Chine	23,3 – 281,3	Tsui, Leung et collab., 2014a
Affluents municipaux	Xi'an, Chine	90,50 ± 65,33	Ma, Dong et collab., 2020
Affluente municipeux	Espagne	118 – 767	Gilart et collab., 2013
Amuents municipaux		131 – 245	Negreira et collab., 2009
Affluents municipaux	Catalogne, Espagne	152,4 – 722	Gago-Ferrero, Mastroianni et collab., 2013
Affluents municipaux	Montcada i Reixac, Espagne	409,7	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sabadell, Espagne	687,9	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Terrassa, Espagne	332	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sant Feliu de Llobregat, Espagne	261,1	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Rubí, Espagne	94,6	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Manresa, Espagne	379,7	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Vila Nova de Gaia, Portugal	88,5 – 184,4	Cunha et collab., 2015a

Tableau 13 – Concentrations en filtres UV mesurées dans des affluents et effluents de stations de traitement des eaux usées municipales

Matrice	Localisation	Concentration (ng/)	Référence
	Benzoph	énone-1 (BP-1)	
Affluents municipaux	Vila Real de Santo António, Portugal	408,5 ± 9,8	Cunha et collab., 2015a
	Cilfunuda Poyoumo Uni	306 000	Kasprzyk-Hordern et collab., 2008a
Andents municipaux	Ciliyiyuu, Koyaume-Om	46 000 – 400 000	Kasprzyk-Hordern et collab., 2009
Affluents municipaux	Coslech, Royaume-Uni	51 000 – 700 000	Kasprzyk-Hordern et collab., 2009
Effluents municipaux	Allemagne	≤ 2,5 – 12	Wick et collab., 2010
Effluents	Bases Scott et McMurdo, île de Ross, Antarctique	7,3 – 6 830	Emnet et collab., 2015
Affluents municipaux	Hong Kong, Chine	≤ 7,54 – 155,0	Tsui, Leung et collab., 2014a
Effluents municipaux	Xi'an, Chine	3,17 – 59,39	Ma, Dong et collab., 2020
	Espagne	20 – 573	Gilart et collab., 2013
		≤ 0,3 – 41	Negreira et collab., 2009
Effluents municipaux	Catalogne, Espagne	≤ 2,5 – 31,1	Gago-Ferrero, Mastroianni et collab., 2013
Effluents municipaux	Montcada i Reixac, Espagne	211,2	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sabadell, Espagne	23,6	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Terrassa, Espagne	28	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sant Feliu de Llobregat, Espagne	10,2	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Rubí, Espagne	5,2	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Manresa, Espagne	4,3	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Lisbonne, Portugal	≤ 400	Almeida et collab., 2013

Matrice	Localisation	Concentration (ng/)	Référence			
	Benzophé	none-1 (BP-1)				
Effluents municipaux	Coslech, Royaume-Uni	≤ 2 000 – 38 000	Kasprzyk-Hordern et collab., 2009			
		32 000	Kasprzyk-Hordern et collab., 2008a			
Endents municipaux	Ciliynydd, Royadine-Oni	≤ 2 000 – 41 000	Kasprzyk-Hordern et collab., 2009			
Effluente municipaux		7,7 – 16,8	Wu et collab., 2013			
Endents municipaux	Talliali, Talwali	1,5 – 1,7	Ho et Ding, 2012			
Effluents municipaux	Taipei, Taïwan	7,3 – 11,6	Chung et collab., 2015			
	Benzophénone-2 (BP-2)					
Affluents municipaux	Allemagne	35 – 93	Wick et collab., 2010			
Affluents municipaux	Catalogne, Espagne	≤ 7	Gago-Ferrero, Mastroianni et collab., 2013			
	Cilfynydd, Royaume-Uni	25 000	Kasprzyk-Hordern et collab., 2008a			
Andents municipaux		9 000 – 247 000	Kasprzyk-Hordern et collab., 2009			
Affluents municipaux	Coslech, Royaume-Uni	61 000 – 403 000	Kasprzyk-Hordern et collab., 2009			
Effluents municipaux	Allemagne	≤ 2,5 – 14	Wick et collab., 2010			
Effluents municipaux	Catalogne, Espagne	≤ 3	Gago-Ferrero, Mastroianni et collab., 2013			
Effluents municipaux	Cilfumudd Royauma Uni	1	Kasprzyk-Hordern et collab., 2008a			
Effluents municipaux	Ciliyiyuu, Koyaume-Oni	≤ 13 – 17	Kasprzyk-Hordern et collab., 2009			
Effluents municipaux	Coslech, Royaume-Uni	≤ 13	Kasprzyk-Hordern et collab., 2009			
Benzophénone-3 (BP-3)						
Affluents municipaux	Allemagne	195 – 518	Wick et collab., 2010			

Matrice	Localisation	Concentration (ng/)	Référence
	Benzoph	nénone-3 (BP-3)	
Affluents municipaux	Leipzig, Allemagne	234 ± 40	Rodil et collab., 2009b
Affluents municipaux	Adélaïde, Australie	1 059 – 3 112	Liu, Ying et collab., 2012a
	Hong Kong, Chine	≤ 0,014 – 258	Yu et collab., 2012
	Hong Kong, Chine	113,8 – 576,5	Tsui, Leung et collab., 2014a
Affluents municipaux	Xi'an, Chine	7,75 ± 2,46	Ma, Dong et collab., 2020
Affluents municipaux	Tianjin, Chine	97 – 722	Li, Ma et collab., 2007
	Espagne	216 – 462	Negreira et collab., 2009
Andents municipaux		≤ 40 – 328	Gilart et collab., 2013
Affluents municipaux	Catalogne, Espagne	75,6 – 306	Gago-Ferrero, Mastroianni et collab., 2013
		5 – 127	Pedrouzo et collab., 2010
Affluents municipaux	Madrid, Espagne	≤ 79 – 904	Rosal et collab., 2010
Affluents municipaux	Montcada i Reixac, Espagne	515,7	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sabadell, Espagne	326,9	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Terrassa, Espagne	387,1	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sant Feliu de Llobregat, Espagne	201	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Rubí, Espagne	75,5	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Manresa, Espagne	297,1	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Galice, Espagne	≤ 1,5 – 168	Rodil, Quintana et collab., 2008
Affluents municipaux	Puerto Real, Espagne	0,1 ± 0,1	Pintado-Herrera et collab., 2013

Matrice	Localisation	Concentration (ng/)	Référence
	Benzoph	énone-3 (BP-3)	
Affluents municipaux	Gênes, Italie	6 – 163	Magi et collab., 2013
Affluents municipaux	La Spezia, Italie	32 – 551	Magi et collab., 2012
Affluents municipaux	Milan, Italie	≤ 5,8 – 82	Castiglioni et collab., 2018
Affluents municipaux	Bragance, Portugal	71,3 – 234,2	Cunha et collab., 2015a
Affluents municipaux	Cachao, Portugal	6,6 – 273,3	Cunha et collab., 2015a
Affluents municipaux	Chaves, Portugal	5,4 – 98,1	Cunha et collab., 2015a
Affluents municipaux	Viana do Castelo, Portugal	29,5 – 237	Cunha et collab., 2015a
Affluents municipaux	Ave, Portugal	31,2 – 188	Cunha et collab., 2015a
Affluents municipaux	Vila Nova de Gaia, Portugal	61,2 ± 2,4	Cunha et collab., 2015a
Affluents municipaux	Coimbra, Portugal	16,9 – 126	Cunha et collab., 2015a
Affluents municipaux	Frielas, Portugal	48,8 – 152,5	Cunha et collab., 2015a
Affluents municipaux	Beirolas, Lisbonnes, Portugal	32,9 – 323,3	Cunha et collab., 2015a
Affluents municipaux	Alcantara, Portugal	8,4 – 171	Cunha et collab., 2015a
Affluents municipaux	Évora, Portugal	57,6 – 150	Cunha et collab., 2015a
Affluents municipaux	Reguengos de Monsaraz, Portugal	40 – 90	Cunha et collab., 2015a
Affluents municipaux	São Pedro de Moel, Portugal	15,8 – 60	Cunha et collab., 2015a
Affluents municipaux	Vale Faro, Portugal	31,8 – 178,6	Cunha et collab., 2015a
Affluents municipaux	Vila Real de Santo António, Portugal	84 – 256,7	Cunha et collab., 2015a
Affluents municipaux	Coslech, Royaume-Uni	≤ 104 000 – 3 975 000	Kasprzyk-Hordern et collab., 2009

Matrice	Localisation	Concentration (ng/)	Référence
	Benzophé	enone-3 (BP-3)	
Affluente municipeux		971 000	Kasprzyk-Hordern et collab., 2008a
Amuents municipaux	Ciliynydd, Royaume-Oni	≤ 104 000 - 1 068 000	Kasprzyk-Hordern et collab., 2009
Affluents municipaux	Horgen, Suisse	900	Balmer et collab., 2005
Affluents municipaux	Meilen, Suisse	700 – 7 700	Balmer et collab., 2005
Affluents municipaux	Männedorf, Suisse	2 300	Balmer et collab., 2005
Affluents municipaux	Thalwil, Suisse	1 100 – 7 800	Balmer et collab., 2005
Affluents municipaux	Wetzikon, Suisse	1 600	Balmer et collab., 2005
Affluents municipaux	Kloten-Opfikon, Suisse	1 700	Balmer et collab., 2005
Affluents municipaux	Wädenswil, Suisse	2 700	Balmer et collab., 2005
Effluents municipaux	Allemagne	≤ 25 – 96	Wick et collab., 2010
		43 – 54	Rodil et Moeder, 2008b
Effluents municipaux	Leipzig, Allemagne	18 – 45	Rodil et collab., 2009b
		338 – 431	Moeder et collab., 2010
Effluents	Bases Scott et McMurdo, île de Ross, Antarctique	16,7 – 195	Emnet et collab., 2015
		32,7 ± 1,7	Liu, Ying et collab., 2011b
	Auelalue, Australie	32 – 2 469	Liu, Ying et collab., 2012a
Effluents municipaux	Chine	3 070	Ma, Wang et collab., 2017
Effluents municipaux	Xi'an, Chine	2,53 – 7,39	Ma, Dong et collab., 2020

Matrice	Localisation	Concentration (ng/)	Référence
	Benzophé	enone-3 (BP-3)	
Effluente municipaux	Hong Kong, Chino	2,6 – 323	Yu et collab., 2012
Endents municipaux		19,3 – 541,1	Tsui, Leung et collab., 2014a
Effluents municipaux	Lanzhou, Chine	1 670 – 1 830	Xue et collab., 2013
Effluents municipaux	Xiamen, Chine	1 680	Mei et Huang, 2017
Effluents municipaux	Corée du Sud	1 – 30	Kim et collab., 2007
	Fanagna	≤ 0,2 - 44	Negreira et collab., 2009
Endents municipaux	Espagne	≤ 40 – 155	Gilart et collab., 2013
	Catalogne, Espagne	≤ 25	Pedrouzo et collab., 2010
Endents municipaux		7,71 – 34	Gago-Ferrero, Mastroianni et collab., 2013
Effluents municipaux	Madrid, Espagne	≤ 79 – 121	Rosal et collab., 2010
Effluents municipaux	Galice, Espagne	≤ 1,5 – 16	Rodil, Quintana et collab., 2008
	Puerto Real, Espagne	0,2 ± 0,01	Pintado-Herrera et collab., 2013
Endents municipaux		82 ± 7	Pintado-Herrera et collab., 2014
Effluents municipaux	Montcada i Reixac, Espagne	217,8	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sabadell, Espagne	29,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Terrassa, Espagne	46,1	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sant Feliu de Llobregat, Espagne	33,6	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Rubí, Espagne	9,4	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Manresa, Espagne	27,1	Molins-Delgado, Távora et collab., 2017

Matrice	Localisation	Concentration (ng/)	Référence
	Benzophé	none-3 (BP-3)	
Effluents municipaux	Gênes, Italie	5 – 28	Magi et collab., 2013
Effluents municipaux	La Spezia, Italie	5 – 21	Magi et collab., 2012
Effluents municipaux	Milan, Italie	≤ 5,8 – 8	Castiglioni et collab., 2018
Effluents municipaux	Préfecture de Saitama, Japon	29 – 164	Kameda et collab., 2011
	Vestierd Nonzège	≤ 5 – 35,5	Langford et Thomas, 2008
Endents municipaux	vesijola, norvege	81 – 598	Langford et collab., 2015
Effluents municipaux	Hias IKS, Norvège	10 – 438	Langford et collab., 2015
Effluents municipaux	Tomasjorda, Norvège	374 – 1 915	Langford et collab., 2015
Effluents municipaux	Lisbonne, Portugal	≤ 1 300	Almeida et collab., 2013
Effluents municipaux	Bragance, Portugal	≤ 10 – 22,2	Cunha et collab., 2015a
Effluents municipaux	Cachao, Portugal	≤ 10 – 136	Cunha et collab., 2015a
Effluents municipaux	Chaves, Portugal	≤ 10 – 16,4	Cunha et collab., 2015a
Effluents municipaux	Viana do Castelo, Portugal	≤ 10 – 32,5	Cunha et collab., 2015a
Effluents municipaux	Ave, Portugal	≤ 10 – 36,1	Cunha et collab., 2015a
Effluents municipaux	Vila Nova de Gaia, Portugal	≤ 10	Cunha et collab., 2015a
Effluents municipaux	Coimbra, Portugal	≤ 10 – 60	Cunha et collab., 2015a
Effluents municipaux	São Pedro de Moel, Portugal	≤ 10 – 13,1	Cunha et collab., 2015a
Effluents municipaux	Frielas, Portugal	≤ 10	Cunha et collab., 2015a
Effluents municipaux	Beirolas, Lisbonnes, Portugal	≤ 10	Cunha et collab., 2015a

Matrice	Localisation	Concentration (ng/)	Référence
	Benzopł	nénone-3 (BP-3)	
Effluents municipaux	Alcantara, Portugal	17,2 - 68,2	Cunha et collab., 2015a
Effluents municipaux	Évora, Portugal	16,6 – 36,5	Cunha et collab., 2015a
Effluents municipaux	Reguengos de Monsaraz, Portugal	≤ 10 – 60,1	Cunha et collab., 2015a
Effluents municipaux	Vale Faro, Portugal	21,6 – 31,3	Cunha et collab., 2015a
Effluents municipaux	Vila Real de Santo António, Portugal	≤ 10 – 35,7	Cunha et collab., 2015a
	Cilfynydd, Royaume-Uni	143 000	Kasprzyk-Hordern et collab., 2008a
Endents municipaux		≤ 80 000 – 2 196 000	Kasprzyk-Hordern et collab., 2009
Effluents municipaux	Coslech, Royaume-Uni	≤ 80 000 - 223 000	Kasprzyk-Hordern et collab., 2009
Effluents municipaux	Horgen, Suisse	300	Balmer et collab., 2005
Effluents municipaux	Meilen, Suisse	50 - 600	Balmer et collab., 2005
Effluents municipaux	Küsnacht, Suisse	60 – 70	Balmer et collab., 2005
Effluents municipaux	Männedorf, Suisse	100 – 200	Balmer et collab., 2005
Effluents municipaux	Thalwil, Suisse	20 – 300	Balmer et collab., 2005
Effluents municipaux	Wädenswil, Suisse	700	Balmer et collab., 2005
Effluents municipaux	Wetzikon, Suisse	10	Balmer et collab., 2005
Effluents municipaux	Kloten-Opfikon, Suisse	≤ 10	Balmer et collab., 2005
	Tainan Taïwan	12,5 – 21,4	Wu et collab., 2013
	Talliali, Talwali	≤ 0,3 – 3,6	Ho et Ding, 2012

Matrice	Localisation	Concentration (ng/)	Référence
	Benzophé	enone-4 (BP-4)	
Effluents municipaux	Taipei, Taïwan	10,9 – 13,5	Chung et collab., 2015
Affluents municipaux	Allemagne	2 120 – 5 130	Wick et collab., 2010
Affluents municipaux	Hong Kong, Chine	≤ 0,59 – 945,7	Tsui, Leung et collab., 2014a
Affluents municipaux	Xi'an, Chine	24,83 ± 4,69	Ma, Dong et collab., 2020
Affluents municipaux	Catalogne, Espagne	738 – 1 548	Gago-Ferrero, Mastroianni et collab., 2013
Affluents municipaux	Galice, Espagne	237 – 1 481	Rodil, Quintana et collab., 2008
Affluents municipaux	Milan, Italie	99 – 1 000	Castiglioni et collab., 2018
	Cilfynydd, Royaume-Uni	5 790 000	Kasprzyk-Hordern et collab., 2008a
Annuents municipaux		1 425 – 13 248 000	Kasprzyk-Hordern et collab., 2009
Affluents municipaux	Coslech, Royaume-Uni	2 218 – 6 084 000	Kasprzyk-Hordern et collab., 2009
Effluents municipaux	Allemagne	105 – 572	Wick et collab., 2010
Effluents municipaux	Hong Kong, Chine	≤ 0,60 - 496,8	Tsui, Leung et collab., 2014a
Affluents municipaux	Xi'an, Chine	15,53 – 23,39	Ma, Dong et collab., 2020
Effluents municipaux	Galice, Espagne	376 – 1 359	Rodil, Quintana et collab., 2008
Effluents municipaux	Catalogne, Espagne	≤ 1 – 1 400	Gago-Ferrero, Mastroianni et collab., 2013
Effluents municipaux	Milan, Italie	112 – 750	Castiglioni et collab., 2018
	Cilfunudd Bouguma Llai	4 309 000	Kasprzyk-Hordern et collab., 2008a
	Cillynydd, Royaume-Uni	818 000 - 4 309 000	Kasprzyk-Hordern et collab., 2009
Effluents municipaux	Coslech, Royaume-Uni	≤ 10 000 - 6 325 000	Kasprzyk-Hordern et collab., 2009

Matrice	Localisation	Concentration (ng/)	Référence	
	Benzophé	none-8 (BP-8)		
Affluents municipaux	Hong Kong, Chine	≤ 4,97 – 174,2	Tsui, Leung et collab., 2014a	
Affluente municipeux	F ono m o	≤ 1,1	Negreira et collab., 2009	
Amuents municipaux	⊏spagne	≤ 40 – 105	Gilart et collab., 2013	
Affluente municipeux	Cotologno, Espagno	≤ 25 – 185	Pedrouzo et collab., 2010	
Andents municipaux	Calalogne, Espagne	≤ 7	Gago-Ferrero, Mastroianni et collab., 2013	
Effluents municipaux	Hong Kong, Chine	≤ 2,32 – 83,5	Tsui, Leung et collab., 2014a	
	Espagne	≤ 1,1	Negreira et collab., 2009	
Endents municipaux		≤ 40 – 539	Gilart et collab., 2013	
	Catalogne, Espagne	55	Pedrouzo et collab., 2010	
Effluents municipaux		≤ 1,5	Gago-Ferrero, Mastroianni et collab., 2013	
	Tainan, Taïwan	9,8 – 10,1	Wu et collab., 2013	
Endents municipaux		≤ 1	Ho et Ding, 2012	
Effluents municipaux	Taipei, Taïwan	≤ 1 − 3,0	Chung et collab., 2015	
2-hydroxy-benzophenone (2HBP)				
Effluents municipaux	Taipei, Taïwan	≤ 0,5 – 2,1	Chung et collab., 2015	
3-hydroxy-benzophenone (3HBP)				
Effluents municipaux	Taipei, Taïwan	≤ 1 – 2,1	Chung et collab., 2015	
	4-hydroxybenz	ophénone (4HBP)		
Affluents municipaux	Montcada i Reixac, Espagne	< 8	Molins-Delgado, Távora et collab., 2017	

Matrice	Localisation	Concentration (ng/)	Référence	
	4-hydroxybenz	ophénone (4HBP)		
Affluents municipaux	Sabadell, Espagne	10,7	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Terrassa, Espagne	< 26,7	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Sant Feliu de Llobregat, Espagne	< 8	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Rubí, Espagne	< 8	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Manresa, Espagne	24,8	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Cotalogno, Fanogno	≤ 8	Corro Formero Mastrojanni et colleb 2012	
Effluents municipaux	Cataloghe, Espagne	≤ 1,5	- Gago-Ferrero, Mastrolanni et collab., 2013	
Effluents municipaux	Sabadell, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Montcada i Reixac, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Terrassa, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Sant Feliu de Llobregat, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Rubí, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Manresa, Espagne	< 5	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Lisbonne, Portugal	≤ 400	Almeida et collab., 2013	
Effluents municipaux	Taipei, Taïwan	≤ 2	Chung et collab., 2015	
4,4'-Dihydroxybenzophénone (4DHB)				
Affluents municipaux	Montcada i Reixac, Espagne	≤ 9	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Sabadell, Espagne	< 30	Molins-Delgado, Távora et collab., 2017	
Affluents municipaux	Terrassa, Espagne	≤ 9	Molins-Delgado, Távora et collab., 2017	

Matrice	Localisation	Concentration (ng/)	Référence
	4,4'-Dihydroxybe	nzophénone (4DHB)	
Affluents municipaux	Sant Feliu de Llobregat, Espagne	≤ 9	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Rubí, Espagne	7,7	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Manresa, Espagne	≤ 9	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Catalogne, Espagne	≤ 9	Gago-Ferrero, Mastroianni et collab., 2013
Effluents municipaux	Montcada i Reixac, Espagne	< 11,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sabadell, Espagne	< 11,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Terrassa, Espagne	< 11,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sant Feliu de Llobregat, Espagne	< 11,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Rubí, Espagne	10,9	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Manresa, Espagne	< 11,7	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Catalogne, Espagne	≤ 3,5	Gago-Ferrero, Mastroianni et collab., 2013
	Ethyl PAE	BA (Et-PABA)	
Affluents municipaux	Montcada i Reixac, Espagne	184,2	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sabadell, Espagne	149,1	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Terrassa, Espagne	224,5	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sant Feliu de Llobregat, Espagne	12,3	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Rubí, Espagne	53,3	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Manresa, Espagne	114,8	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Catalogne, Espagne	17,22 – 120,9	Gago-Ferrero, Mastroianni et collab., 2013

Matrice	Localisation	Concentration (ng/)	Référence	
	Ethyl PA	ABA (Et-PABA)		
Effluents municipaux	Montcada i Reixac, Espagne	35,8	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Sabadell, Espagne	32,1	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Terrassa, Espagne	66	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Sant Feliu de Llobregat, Espagne	23,4	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Rubí, Espagne	129,1	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Manresa, Espagne	22,4	Molins-Delgado, Távora et collab., 2017	
Effluents municipaux	Catalogne, Espagne	≤ 2,5	Gago-Ferrero, Mastroianni et collab., 2013	
Octyl diméthyl PABA (OD-PABA)				
Affluents municipaux	Leipzig, Allemagne	≤ 0,4	Rodil et collab., 2009b	
Affluents municipaux	Hong Kong, Chine	≤ 0,31 – 376,9	Tsui, Leung et collab., 2014a	
Affluents municipaux	Galice, Espagne	≤ 0,7	Rodil, Quintana et collab., 2008	
Affluents municipaux	Catalogne, Espagne	≤ 25 – 55	Pedrouzo et collab., 2010	
Affluents municipaux	Gênes, Italie	≤ 1,2 – 4	Magi et collab., 2013	
Affluents municipaux	La Spezia, Italie	≤ 0,6	Magi et collab., 2012	
Affluents municipaux	Bragance, Portugal	51,5 – 197	Cunha et collab., 2015a	
Affluents municipaux	Cachao, Portugal	28,2 ± 4,1	Cunha et collab., 2015a	
Affluents municipaux	Chaves, Portugal	24,9 ± 3,2	Cunha et collab., 2015a	
Affluents municipaux	Viana do Castelo, Portugal	38,3 ± 3,2	Cunha et collab., 2015a	
Affluents municipaux	Ave, Portugal	22 – 139,9	Cunha et collab., 2015a	

Matrice	Localisation	Concentration (ng/)	Référence
	Octyl diméth	yl PABA (OD-PABA)	
Affluents municipaux	Vila Nova de Gaia, Portugal	34,8 - 87,2	Cunha et collab., 2015a
Affluents municipaux	São Pedro de Moel, Portugal	12,2 – 23,2	Cunha et collab., 2015a
Affluents municipaux	Frielas, Portugal	12,9 ± 0,2	Cunha et collab., 2015a
Affluents municipaux	Evora, Portugal	66,4 ± 0,9	Cunha et collab., 2015a
Affluents municipaux	Reguengos de Monsaraz, Portugal	92,8 – 315,3	Cunha et collab., 2015a
Affluents municipaux	Vale Faro, Portugal	32,2 - 418	Cunha et collab., 2015a
	Leipzig, Allemagne	2 – 7	Rodil et Moeder, 2008b
Endents municipaux		≤ 0,4	Rodil et collab., 2009b
Effluents municipaux	Chine	4 220	Ma, Wang et collab., 2017
Effluents municipaux	Xiamen, Chine	2 890	Mei et Huang, 2017
Effluents municipaux	Lanzhou, Chine	620 – 910	Xue et collab., 2013
Effluents municipaux	Hong Kong, Chine	≤ 0,11 – 224,3	Tsui, Leung et collab., 2014a
Effluents municipaux	Catalogne, Espagne	25	Pedrouzo et collab., 2010
Effluents municipaux	Galice, Espagne	≤ 0,7	Rodil, Quintana et collab., 2008
Effluents municipaux	Gênes, Italie	≤ 1,2	Magi et collab., 2013
Effluents municipaux	La Spezia, Italie	≤ 0,6	Magi et collab., 2012
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,2	Kameda et collab., 2011
Effluents municipaux	Vestjord, Norvège	≤ 5	Langford et collab., 2015
Effluents municipaux	Hias IKS, Norvège	≤ 5	Langford et collab., 2015

Matrice	Localisation	Concentration (ng/)	Référence
	Octyl diméthyl	PABA (OD-PABA)	
Effluents municipaux	Tomasjorda, Norvège	≤ 5	Langford et collab., 2015
Effluents municipaux	Bragance, Portugal	≤ 10	Cunha et collab., 2015a
Effluents municipaux	Ave, Portugal	≤ 10	Cunha et collab., 2015a
	3-(4-méthylbenzylid	ène) camphor (4-MBC)	
Affluents municipaux	Leipzig, Allemagne	278 ± 63	Rodil et collab., 2009b
Affluents municipaux	Adélaïde, Australie	394 – 406	Liu, Ying et collab., 2012a
Affluents municipaux	Hong Kong, Chine	≤ 3,46 – 335,4	Tsui, Leung et collab., 2014a
Affluents municipaux	Tianjin, Chine	475 – 2 128	Li, Ma et collab., 2007
Affluents municipaux	Catalogne, Espagne	≤ 33,3 – 48,3	Gago-Ferrero, Mastroianni et collab., 2013
Affluents municipaux	Montcada i Reixac, Espagne	≤ 10	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sabadell, Espagne	≤ 10	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Terrassa, Espagne	30,1	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Sant Feliu de Llobregat, Espagne	≤ 10	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Galice, Espagne	≤ 4 – 122	Rodil, Quintana et collab., 2008
Affluents municipaux	Rubí, Espagne	≤ 10	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Manresa, Espagne	29,3	Molins-Delgado, Távora et collab., 2017
Affluents municipaux	Milan, Italie	≤ 7	Castiglioni et collab., 2018
Affluents municipaux	Viana do Castelo, Portugal	45,8 ± 4,6	Cunha et collab., 2015a
Affluents municipaux	Coimbra, Portugal	84,6 ± 4,5	Cunha et collab., 2015a

Matrice	Localisation	Concentration (ng/)	Référence
	3-(4-méthylbenzyli	dène) camphor (4-MBC)	
Affluents municipaux	Vale Faro, Portugal	154,9 ± 1,1	Cunha et collab., 2015a
Affluents municipaux	Vila Real de Santo António, Portugal	48,6 ± 3,7	Cunha et collab., 2015a
Affluents municipaux	Horgen, Suisse	600	Balmer et collab., 2005
Affluents municipaux	Kloten-Opfikon, Suisse	1 600	Balmer et collab., 2005
Affluents municipaux	Meilen, Suisse	600 – 6 500	Balmer et collab., 2005
Affluents municipaux	Männedorf, Suisse	3 000	Balmer et collab., 2005
Affluents municipaux	Thalwil, Suisse	1 900 – 5 500	Balmer et collab., 2005
Affluents municipaux	Wädenswil, Suisse	3 300	Balmer et collab., 2005
Affluents municipaux	Wetzikon, Suisse	2 200	Balmer et collab., 2005
Affluents municipaux	Hasle, Suisse	680 – 1 410	Kupper et collab., 2006
		38 ± 2	Rodil et Moeder, 2008b
Effluents municipaux	Leipzig, Allemagne	≤ 1,7 – 62	Rodil et collab., 2009b
		102 – 124	Moeder et collab., 2010
Effluents	Bases Scott et McMurdo, île de Ross, Antarctique	173 – 11 700	Emnet et collab., 2015
		≤ 1,7	Liu, Ying et collab., 2011b
Emuents municipaux	Auelalue, Australie	≤ 0,5 - 404	Liu, Ying et collab., 2012a
Effluents municipaux	Hong Kong, Chine	≤ 1,58 – 207,2	Tsui, Leung et collab., 2014a
Effluents municipaux	Xiamen, Chine	2 340	Mei et Huang, 2017

Matrice	Localisation	Concentration (ng/)	Référence
	3-(4-méthylbenzyli	dène) camphor (4-MBC)	
Effluents municipaux	Galice, Espagne	≤ 4 – 51	Rodil, Quintana et collab., 2008
Effluents municipaux	Puerto Real, Espagne	49 ± 1	Pintado-Herrera et collab., 2014
Effluents municipaux	Madrid, Espagne	55	Rosal et collab., 2010
Effluents municipaux	Catalogne, Espagne	≤ 4 – 23,8	Gago-Ferrero, Mastroianni et collab., 2013
Effluents municipaux	Sabadell, Espagne	< 13,3	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Montcada i Reixac, Espagne	22	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Terrassa, Espagne	58,1	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Sant Feliu de Llobregat, Espagne	< 13,3	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Rubí, Espagne	34,6	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Manresa, Espagne	≤ 4	Molins-Delgado, Távora et collab., 2017
Effluents municipaux	Milan, Italie	≤7	Castiglioni et collab., 2018
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,1	Kameda et collab., 2011
Effluents municipaux	Vestfjord, Norvège	≤ 5 – 17,2	Langford et Thomas, 2008
Effluents municipaux	Viana do Castelo, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Coimbra, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Vale Faro, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Vila Real de Santo António, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Horgen, Suisse	200	Balmer et collab., 2005
Effluents municipaux	Meilen, Suisse	300 – 2 300	Balmer et collab., 2005

Matrice	Localisation	Concentration (ng/)	Référence
	3-(4-méthylbenzylic	lène) camphor (4-MBC)	
Effluents municipaux	Küsnacht, Suisse	400 – 500	Balmer et collab., 2005
Effluents municipaux	Männedorf, Suisse	200 – 600	Balmer et collab., 2005
Effluents municipaux	Thalwil, Suisse	400 – 1 000	Balmer et collab., 2005
Effluents municipaux	Wädenswil, Suisse	2 700	Balmer et collab., 2005
Effluents municipaux	Wetzikon, Suisse	60	Balmer et collab., 2005
Effluents municipaux	Kloten-Opfikon, Suisse	60	Balmer et collab., 2005
Effluents municipaux	Hasle, Suisse	50 – 920	Kupper et collab., 2006
	2-éthylhexyl	salicylate (EHS)	
Affluents municipaux	Leipzig, Allemagne	753 ± 67	Rodil et collab., 2009b
Affluents municipaux	Hong Kong, Chine	≤ 63,9 – 1 188,3	Tsui, Leung et collab., 2014a
Affluents municipaux	Espagne	≤ 0,2 – 28	Negreira et collab., 2009
Affluents municipaux	Gênes, Italie	≤ 199	Magi et collab., 2013
Affluents municipaux	La Spezia, Italie	≤ 114	Magi et collab., 2012
Effluents municipaux	Leipzig, Allemagne	≤ 4	Rodil et Moeder, 2008b; Rodil et collab., 2009b
Effluents municipaux	Chine	≤ 50	Ma, Wang et collab., 2017
Effluents municipaux	Lanzhou, Chine	≤ 140	Xue et collab., 2013
Effluents municipaux	Xiamen, Chine	5 120	Mei et Huang, 2017
Effluents municipaux	Hong Kong, Chine	≤ 4,18 – 128,9	Tsui, Leung et collab., 2014a
Effluents municipaux	Espagne	≤ 0,2 - 7,5	Negreira et collab., 2009

Matrice	Localisation	Concentration (ng/)	Référence
	2-éthylhexyl	salicylate (EHS)	
Effluents municipaux	Puerto Real, Espagne	3 ± 1	Pintado-Herrera et collab., 2014
Effluents municipaux	Gênes, Italie	≤ 199	Magi et collab., 2013
Effluents municipaux	La Spezia, Italie	≤ 114	Magi et collab., 2012
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,4 – 77	Kameda et collab., 2011
Effluents municipaux	Tainan, Taïwan	≤ 2 − 6,1	Wu et collab., 2013
	Benzyl sa	alicylate (BS)	
Affluents municipaux	Cincinnati, Ohio, États-Unis	8 960	Simonich et collab., 2000
Affluents municipaux	États-Unis	19 500 ± 10 800	Simonich et collab., 2002
Affluents municipaux	Europe (Angleterre et Pays-Bas)	10 200 ± 4 510	Simonich et collab., 2002
Effluents municipaux	Cincinnati, Ohio, États-Unis	117 – 3 310	Simonich et collab., 2000
Effluents municipaux	États-Unis	31 – 1 025	Simonich et collab., 2002
Effluents municipaux	Europe (Angleterre et Pays-Bas)	40 – 990	Simonich et collab., 2002
Effluents municipaux	Préfecture de Saitama, Japon	107 – 169	Kameda et collab., 2011
	Homos	salate (HS)	
Affluents municipaux	Leipzig, Allemagne	≤ 4	Rodil et collab., 2009b
Affluents municipaux	Hong Kong, Chine	≤ 38,95 – 1 650,4	Tsui, Leung et collab., 2014a
Affluents municipaux	Espagne	≤ 0,3	Negreira et collab., 2009
Affluents municipaux	Gênes, Italie	≤ 152	Magi et collab., 2013
Affluents municipaux	La Spezia, Italie	≤ 94	Magi et collab., 2012

Matrice	Localisation	Concentration (ng/)	Référence
	Homos	alate (HS)	
	Loinzia Allemogno	8 – 9	Rodil et Moeder, 2008b
Emuents municipaux	Leipzig, Aliemagne	≤ 4	Rodil et collab., 2009b
Effluents municipaux	Hong Kong, Chine	≤ 3,75 – 153,9	Tsui, Leung et collab., 2014a
Effluents municipaux	Espagne	≤ 0,3	Negreira et collab., 2009
Effluents municipaux	Puerto Real, Espagne	22 ± 5	Pintado-Herrera et collab., 2014
Effluents municipaux	La Spezia, Italie	≤ 94	Magi et collab., 2012
Effluents municipaux	Gênes, Italie	≤ 152	Magi et collab., 2013
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,4	Kameda et collab., 2011
Effluents municipaux	Tainan, Taïwan	≤ 2	Wu et collab., 2013
	Isoamyl 4-métho	oxycinnamate (IMC)	
Affluents municipaux	Leipzig, Allemagne	66 ± 7	Rodil et collab., 2009b
Affluents municipaux	Hong Kong, Chine	≤ 14,09 – 226,0	Tsui, Leung et collab., 2014a
Affluents municipaux	Galice, Espagne	≤ 2,5	Rodil, Quintana et collab., 2008
Effluente municipaux		≤ 0,9	Rodil et collab., 2009b
Endents municipaux	Leipzig, Allemagne	≤ 2 − 3	Rodil et Moeder, 2008b
Effluents municipaux	Hong Kong, Chine	≤ 11,64 – 165,5	Tsui, Leung et collab., 2014a
Effluents municipaux	Galice, Espagne	≤ 2,5 – 59	Rodil, Quintana et collab., 2008
	2-éthylhexyl 4-méth	oxycinnamate (EHMC)	
Affluents municipaux	Leipzig, Allemagne	1 732 ± 426	Rodil et collab., 2009b

Matrice	Localisation	Concentration (ng/)	Référence
	2-éthylhexyl 4-mé	hoxycinnamate (EHMC)	
Affluents municipaux	Adélaïde, Australie	106 – 3 119	Liu, Ying et collab., 2012a
Affluents municipaux	Hong Kong, Chine	50,2 – 1 134,4	Tsui, Leung et collab., 2014a
Affluents municipaux	Tianjin, Chine	54 – 116	Li, Ma et collab., 2007
Affluents municipaux	Xi'an, Chine	55,5 ± 14,6	Ma, Dong et collab., 2020
Affluents municipaux	Gênes, Italie	≤ 2,6 - 68	Magi et collab., 2013
Affluents municipaux	La Spezia, Italie	23 ± 3	Magi et collab., 2012
Affluents municipaux	Bragança, Portugal	47,9 ± 3,8	Cunha et collab., 2015a
Affluents municipaux	Cachao, Portugal	37,9 ± 3,0	Cunha et collab., 2015a
Affluents municipaux	Chaves, Portugal	41,6 ± 0,8	Cunha et collab., 2015a
Affluents municipaux	Viana do Castelo, Portugal	133,3 ± 2,3	Cunha et collab., 2015a
Affluents municipaux	Ave, Portugal	48,7 ± 2,1	Cunha et collab., 2015a
Affluents municipaux	Vila Nova de Gaia, Portugal	222,5 ± 7,8	Cunha et collab., 2015a
Affluents municipaux	Coimbra, Portugal	32,8 ± 3,2	Cunha et collab., 2015a
Affluents municipaux	São Pedro de Moel, Portugal	46,1 ± 0,2	Cunha et collab., 2015a
Affluents municipaux	Beirolas, Lisbonnes, Portugal	$689,5 \pm 0,5$	Cunha et collab., 2015a
Affluents municipaux	Alcantara, Portugal	159,3 ± 1,5	Cunha et collab., 2015a
Affluents municipaux	Vale Faro, Portugal	147,7 ± 5,4	Cunha et collab., 2015a
Affluents municipaux	Vila Real de Santo António, Portugal	93,7 ± 8,7	Cunha et collab., 2015a
Affluents municipaux	Horgen, Suisse	1 100	Balmer et collab., 2005

Matrice	Localisation	Concentration (ng/)	Référence
	2-éthylhexyl 4-méth	noxycinnamate (EHMC)	
Affluents municipaux	Meilen, Suisse	500 – 1 900	Balmer et collab., 2005
Affluents municipaux	Männedorf, Suisse	9 600	Balmer et collab., 2005
Affluents municipaux	Thalwil, Suisse	1 400 – 4 300	Balmer et collab., 2005
Affluents municipaux	Wädenswil, Suisse	4 000	Balmer et collab., 2005
Affluents municipaux	Wetzikon, Suisse	4 900	Balmer et collab., 2005
Affluents municipaux	Kloten-Opfikon, Suisse	6 800	Balmer et collab., 2005
Affluents municipaux	Hasle, Suisse	10 400 – 49 740	Kupper et collab., 2006
	Leipzig, Allemagne	332 – 391	Moeder et collab., 2010
Effluents municipaux		11 – 23	Rodil et Moeder, 2008b
		≤ 16	Rodil et collab., 2009b
Effluents municipaux	Adélaïde, Australie	≤ 2,3	Liu, Ying et collab., 2011b
		≤ 0,7 – 385	Liu, Ying et collab., 2012a
Effluents municipaux	Chine	2 390	Ma, Wang et collab., 2017
Effluents municipaux	Xiamen, Chine	5 460	Mei et Huang, 2017
Effluents municipaux	Xi'an, Chine	20,50 - 32,83	Ma, Dong et collab., 2020
Effluents municipaux	Lanzhou, Chine	710 – 910	Xue et collab., 2013
Effluents municipaux	Hong Kong, Chine	≤ 0,85 - 505,2	Tsui, Leung et collab., 2014a
Effluents municipaux	Puerto Real, Espagne	31 ± 6	Pintado-Herrera et collab., 2014
Effluents municipaux	Madrid, Espagne	≤ 33 – 234	Rosal et collab., 2010

Matrice	Localisation	Concentration (ng/)	Référence
	2-éthylhexyl 4-méti	hoxycinnamate (EHMC)	
Effluents municipaux	Gênes, Italie	≤ 2,6	Magi et collab., 2013
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,1 – 12	Kameda et collab., 2011
Effluents municipaux	Vestiond Norvège	≤ 5 – 189,3	Langford et Thomas, 2008
	vesijolu, norvege	≤ 5	Langford et collab., 2015
Effluents municipaux	Hias IKS, Norvège	≤ 5	Langford et collab., 2015
Effluents municipaux	Tomasjorda, Norvège	≤ 5	Langford et collab., 2015
Effluents municipaux	Bragance, Portugal	57,8 ± 4,6	Cunha et collab., 2015a
Effluents municipaux	Chaves, Portugal	35,1 ± 2,1	Cunha et collab., 2015a
Effluents municipaux	Viana do Castelo, Portugal	54 ± 3,1	Cunha et collab., 2015a
Effluents municipaux	Vila Nova de Gaia, Portugal	49,5 ± 2,4	Cunha et collab., 2015a
Effluents municipaux	Coimbra, Portugal	42,7 ± 1,5	Cunha et collab., 2015a
Effluents municipaux	São Pedro de Moel, Portugal	37,4 ± 1,3	Cunha et collab., 2015a
Effluents municipaux	Beirolas, Lisbonnes, Portugal	483,4 ± 2,5	Cunha et collab., 2015a
Effluents municipaux	Alcantara, Portugal	153,9 ± 5,2	Cunha et collab., 2015a
Effluents municipaux	Vale Faro, Portugal	46,1 ± 2,2	Cunha et collab., 2015a
Effluents municipaux	Horgen, Suisse	40	Balmer et collab., 2005
Effluents municipaux	Meilen, Suisse	10 – 30	Balmer et collab., 2005
Effluents municipaux	Küsnacht, Suisse	≤ 10 – 20	Balmer et collab., 2005
Effluents municipaux	Männedorf, Suisse	20 – 80	Balmer et collab., 2005

Matrice	Localisation	Concentration (ng/)	Référence
	2-éthylhexyl 4-méth	oxycinnamate (EHMC)	
Effluents municipaux	Thalwil, Suisse	20 – 100	Balmer et collab., 2005
Effluents municipaux	Wädenswil, Suisse	70	Balmer et collab., 2005
Effluents municipaux	Wetzikon, Suisse	10	Balmer et collab., 2005
Effluents municipaux	Kloten-Opfikon, Suisse	20	Balmer et collab., 2005
Effluents municipaux	Hasle, Suisse	20 – 15 960	Kupper et collab., 2006
	Octyl-tri	azone (OT)	
Affluents municipaux	- Hasle, Suisse	550 – 980	Kupper et celleb 2006
Effluents municipaux		≤ 113 – 770	Rupper et collab., 2006
	Octocr	ylène (OC)	
Affluents municipaux	Leipzig, Allemagne	5 322 ± 612	Rodil et collab., 2009b
Affluents municipaux	Adélaïde, Australie	88 – 89	Liu, Ying et collab., 2012a
Affluents municipaux	Xi'an, Chine	13,25 ± 8,95	Ma, Dong et collab., 2020
Affluents municipaux	Tianjin, Chine	34 – 153	Li, Ma et collab., 2007
Affluents municipaux	Hong Kong, Chine	≤ 66,6 – 131,5	Tsui, Leung et collab., 2014a
Affluents municipaux	Catalogne, Espagne	129	Pedrouzo et collab., 2010
Affluents municipaux	Galice, Espagne	≤ 3 – 36	Rodil, Quintana et collab., 2008
Affluents municipaux	Puerto Real, Espagne	1,3 ± 0,2	Pintado-Herrera et collab., 2013
Affluents municipaux	Gênes, Italie	12 – 390	Magi et collab., 2013
Affluents municipaux	La Spezia, Italie	28 – 463	Magi et collab., 2012

Matrice	Localisation	Concentration (ng/)	Référence
	Octocr	ylène (OC)	
Affluents municipaux	Bragance, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Cachao, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Chaves, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Viana do Castelo, Portugal	≤ 10 – 689,6	Cunha et collab., 2015a
Affluents municipaux	Ave, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Vila Nova de Gaia, Portugal	88,1 – 247,6	Cunha et collab., 2015a
Affluents municipaux	Coimbra, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	São Pedro de Moel, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Frielas, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Beirolas, Lisbonne, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Alcantara, Portugal	49,1 – 687,8	Cunha et collab., 2015a
Affluents municipaux	Évora, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Reguengos de Monsaraz, Portugal	≤ 10	Cunha et collab., 2015a
Affluents municipaux	Vale Faro, Portugal	≤ 10 – 785,5	Cunha et collab., 2015a
Affluents municipaux	Vila Real de Santo António, Portugal	≤ 10 – 546	Cunha et collab., 2015a
Affluents municipaux	Horgen, Suisse	200	Balmer et collab., 2005
Affluents municipaux	Meilen, Suisse	100 – 1 200	Balmer et collab., 2005
Affluents municipaux	Männedorf, Suisse	6 100	Balmer et collab., 2005
Affluents municipaux	Thalwil, Suisse	2 100 – 3 200	Balmer et collab., 2005

Matrice	Localisation	Concentration (ng/)	Référence
	Octocr	ylène (OC)	
Affluents municipaux	Wädenswil, Suisse	1 100	Balmer et collab., 2005
Affluents municipaux	Wetzikon, Suisse	2 700	Balmer et collab., 2005
Affluents municipaux	Kloten-Opfikon, Suisse	2 100	Balmer et collab., 2005
Affluents municipaux	Hasle, Suisse	950 – 3 060	Kupper et collab., 2006
		≤ 8,5 – 179	Rodil et collab., 2009b
Effluents municipaux	Leipzig, Allemagne	10 – 18	Rodil et Moeder, 2008b
		419 – 461	Moeder et collab., 2010
	Adélaïde, Australie	≤ 11,3	Liu, Ying et collab., 2011b
Endents municipaux		≤ 3,4 – 141	Liu, Ying et collab., 2012a
Effluents municipaux	Hong Kong, Chine	≤ 5,91	Tsui, Leung et collab., 2014a
Effluents municipaux	Xi'an, Chine	1,67 – 7,22	Ma, Dong et collab., 2020
Effluents municipaux	Catalogne, Espagne	≤ 25	Pedrouzo et collab., 2010
Effluents municipaux	Madrid, Espagne	≤ 36 – 114	Rosal et collab., 2010
Effluents municipaux	Galice, Espagne	≤ 3 – 20	Rodil, Quintana et collab., 2008
Effluents municipaux	Duarta Pagi Fanagna	$0,2 \pm 0,06$	Pintado-Herrera et collab., 2013
Effluents municipaux	Puerto Real, Espagne	56 ± 4	Pintado-Herrera et collab., 2014
Effluents municipaux	Gênes, Italie	4 – 126	Magi et collab., 2013
Effluents municipaux	La Spezia, Italie	13 ± 3	Magi et collab., 2012
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,3	Kameda et collab., 2011

Matrice	Localisation	Concentration (ng/)	Référence
	Octoc	rylène (OC)	
	Veetijerd Nervège	≤ 5 – 31,2	Langford et Thomas, 2008
Endents municipaux	vestjjord, norvege	181 – 538	Langford et collab., 2015
Effluents municipaux	Hias IKS, Norvège	7 – 227	Langford et collab., 2015
Effluents municipaux	Tomasjorda, Norvège	1 701 – 6 969	Langford et collab., 2015
Effluents municipaux	Viana do Castelo, Portugal	154	Cunha et collab., 2015a
Effluents municipaux	Alcantara, Portugal	353,5 – 357,4	Cunha et collab., 2015a
Effluents municipaux	Vale Faro, Portugal	124,6 ± 1,3	Cunha et collab., 2015a
Effluents municipaux	Horgen, Suisse	20	Balmer et collab., 2005
Effluents municipaux	Meilen, Suisse	≤ 10 – 60	Balmer et collab., 2005
Effluents municipaux	Küsnacht, Suisse	≤ 10	Balmer et collab., 2005
Effluents municipaux	Männedorf, Suisse	30 – 90	Balmer et collab., 2005
Effluents municipaux	Thalwil, Suisse	10 – 30	Balmer et collab., 2005
Effluents municipaux	Wädenswil, Suisse	100	Balmer et collab., 2005
Effluents municipaux	Wetzikon, Suisse	≤ 10	Balmer et collab., 2005
Effluents municipaux	Kloten-Opfikon, Suisse	≤ 10	Balmer et collab., 2005
Effluents municipaux	Hasle, Suisse	≤ 17 – 1 490	Kupper et collab., 2006
	Étocr	ylène (Eto)	
Effluents municipaux	Préfecture de Saitama, Japon	≤ 0,3	Kameda et collab., 2011

Matrice	Localisation	Concentration (ng/)	Référence
	Acide 2-phénylbenzimio	dazole-5-sulfonique (PB	SA)
Affluents municipaux	Allemagne	275 – 3 890	Wick et collab., 2010
Affluents municipaux	Galice, Espagne	181 – 2 503	Rodil, Quintana et collab., 2008
Affluents municipaux	Milan, Italie	60 – 573	Castiglioni et collab., 2018
Effluents municipaux	Allemagne	316 – 1 820	Wick et collab., 2010
Effluents municipaux	Galice, Espagne	109 – 2 679	Rodil, Quintana et collab., 2008
Effluents municipaux	Milan, Italie	112 – 383	Castiglioni et collab., 2018
	Acide phényldibenzimid	azole tétrasulfonique (P	DT)
Affluents municipaux	- Galice, Espagne	≤ 2,1	Radil Quistana et callab 2009
Effluents municipaux		≤ 2,1	Rodii, Quintana et conab., 2008
	Butyl-méthoxy dibe	nzoylméthane (BMDM)	
Affluents municipaux	Leipzig, Allemagne	407 ± 25	Rodil et collab., 2009b
Affluents municipaux	Hong Kong, Chine	35 – 1 290,2	Tsui, Leung et collab., 2014a
Affluents municipaux	Galice, Espagne	≤ 0,8	Rodil, Quintana et collab., 2008
Affluents municipaux	Alcantara, Portugal	2 935 ± 12,1	Cunha et collab., 2015a
Affluents municipaux	Bragance, Portugal	≤ 50	Cunha et collab., 2015a
Affluents municipaux	Cachao, Portugal	495 ± 8,7	Cunha et collab., 2015a
Affluents municipaux	Chaves, Portugal	195 ± 2,4	Cunha et collab., 2015a
Affluents municipaux	Vale Faro, Portugal	507 ± 2,7	Cunha et collab., 2015a
Affluents municipaux	Viana do Castelo, Portugal	312,2 ± 10,1	Cunha et collab., 2015a

Matrice	Localisation	Concentration (ng/)	Référence
	Butyl-méthoxy dibe	enzoylméthane (BMDM)	
Affluents municipaux	São Pedro de Moel, Portugal	71,1 – 1247,5	Cunha et collab., 2015a
		≤ 10 – 29	Rodil et collab., 2009b
Effluents municipaux	Leipzig, Anemagne	≤ 63	Rodil et Moeder, 2008b
Effluents municipaux	Hong Kong, Chine	≤ 0,44 – 1 018,3	Tsui, Leung et collab., 2014a
Effluents municipaux	Galice, Espagne	≤ 0,8	Rodil, Quintana et collab., 2008
Effluents municipaux	Cachao, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Chaves, Portugal	≤ 50	Cunha et collab., 2015a
Effluents municipaux	Viana do Castelo, Portugal	93,2 ± 8,6	Cunha et collab., 2015a
Effluents municipaux	São Pedro de Moel, Portugal	44,5 – 62,6	Cunha et collab., 2015a
Effluents municipaux	Alcantara, Portugal	168,1 ± 3,5	Cunha et collab., 2015a
Effluents municipaux	Vale Faro, Portugal	≤ 50	Cunha et collab., 2015a

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzoph	énone-1 (BP-1)	
Boues	Allemagne	5,1 ± 1,5	Wick et collab., 2010
Boues	Chine	4,41 – 91,6	Zhang et collab., 2011
Boues	Tarragone, Espagne	≤2	Nieto et collab., 2009
Boues	Gérone, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Sant Feliu de Llobregat, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Rubí, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Granollers, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Reus, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Montcada i Reixac, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	La Llagosta, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Lleida, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Vilafranca del Penedès, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Mataró, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	El Prat de Llobregat, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Terrassa, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Gavà, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Teià, Espagne	≤ 60	Gago-Ferrero et collab., 2011b
Boues	Vic, Espagne	≤ 60	Gago-Ferrero et collab., 2011b

Tableau 14 – Concentrations en filtres UV mesurées dans les boues d'épuration

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophén	one-2 (BP-2)	
Boues	Allemagne	11 ± 2	Wick et collab., 2010
Boues	Chine	≤ 0,22	Zhang et collab., 2011
	Benzophén	one-3 (BP-3)	
Boues	Allemagne	132 ± 23	Wick et collab., 2010
Boues	Adélaïda Australia	74,0 ± 12,2	Liu, Ying et collab., 2011b
Doues		16 – 1 785	Liu, Ying et collab., 2012a
Boues	Chine	2,05 – 13,3	Zhang et collab., 2011
Boues	Tarragone, Espagne	10 – 20	Nieto et collab., 2009
Boues	Leipzig, Allemagne	29 ± 3	Rodil et collab., 2009c
Boues	Gérone, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Sant Feliu de Llobregat, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Rubí, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Granollers, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Reus, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Montcada i Reixac, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	La Llagosta, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Lleida, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Vilafranca del Penedès, Espagne	≤ 1	Gago-Ferrero et collab., 2011b
Boues	Mataró, Espagne	≤ 1	Gago-Ferrero et collab., 2011b

Matrice	Localisation	Concentration (ng/g)	Référence		
	Benzophén	one-3 (BP-3)			
Boues	El Prat de Llobregat, Espagne	≤ 1	Gago-Ferrero et collab., 2011b		
Boues	Terrassa, Espagne	≤ 1	Gago-Ferrero et collab., 2011b		
Boues	Gavà, Espagne	≤ 1	Gago-Ferrero et collab., 2011b		
Boues	Teià, Espagne	790	Gago-Ferrero et collab., 2011b		
Boues	Vic, Espagne	≤ 1	Gago-Ferrero et collab., 2011b		
Boues	Vestjord, Norvège	≤ 10	Langford et collab., 2015		
Boues	Hias IKS, Norvège	824 – 2 116	Langford et collab., 2015		
	Benzophénone-4 (BP-4)				
Boues	Allemagne	29 ± 7	Wick et collab., 2010		
	Benzophén	one-8 (BP-8)			
Boues	Chine	≤ 0,14	Zhang et collab., 2011		
	4-hydroxybenzo	phénone (4HBP)			
Boues	Chine	2,66 – 10,1	Zhang et collab., 2011		
Boues	Gérone, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Sant Feliu de Llobregat, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Rubí, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Granollers, Espagne	150	Gago-Ferrero et collab., 2011b		
Boues	Reus, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Montcada i Reixac, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		

Matrice	Localisation	Concentration (ng/g)	Référence		
	4-hydroxybenzo	ophénone (4HBP)			
Boues	La Llagosta, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Lleida, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Vilafranca del Penedès, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Mataró, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	El Prat de Llobregat, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Terrassa, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Gavà, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Teià, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Vic, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
	4,4'-Dihydroxyber	nzophénone (4DHB)			
Boues	Gérone, Espagne	≤ 17	Gago-Ferrero et collab., 2011b		
Boues	Sant Feliu de Llobregat, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Rubí, Espagne	70	Gago-Ferrero et collab., 2011b		
Boues	Granollers, Espagne	40	Gago-Ferrero et collab., 2011b		
Boues	Reus, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Montcada i Reixac, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	La Llagosta, Espagne	620	Gago-Ferrero et collab., 2011b		
Boues	Lleida, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Vilafranca del Penedès, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Matrice	Localisation	Concentration (ng/g)	Référence		
---------	----------------------------------	-------------------------	--------------------------------	--	--
	4,4'-Dihydroxyben	zophénone (4DHB)			
Boues	Mataró, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	El Prat de Llobregat, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Terrassa, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Gavà, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Teià, Espagne	≤ 5	Gago-Ferrero et collab., 2011b		
Boues	Vic, Espagne	≤ 17	Gago-Ferrero et collab., 2011b		
	Octyl diméthyl PABA (OD-PABA)				
Boues	Leipzig, Allemagne	1,9 ± 0,3	Rodil et collab., 2009c		
Boues	Gérone, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Sant Feliu de Llobregat, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Rubí, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Granollers, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Reus, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Montcada i Reixac, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	La Llagosta, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Lleida, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Vilafranca del Penedès, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Mataró, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	El Prat de Llobregat, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		

Matrice	Localisation	Concentration (ng/g)	Référence		
	Octyl diméthyl l	PABA (OD-PABA)			
Boues	Terrassa, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Gavà, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Teià, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Vic, Espagne	≤ 0,2	Gago-Ferrero et collab., 2011b		
Boues	Tarragone, Espagne	130 – 170	Nieto, Borrull et collab., 2009		
Boues	Vestjord, Norvège	≤ 4	Langford, Reid et collab., 2015		
Boues	Hias IKS, Norvège	≤ 10	Langford, Reid et collab., 2015		
	3-(4-méthylbenzylidène) camphor (4-MBC)				
Boues	Leipzig, Allemagne	73 ± 3	Rodil et collab., 2009c		
Boues	Adélaïde, Australie	250 ± 58,1	Liu, Ying et collab., 2011b		
		64 – 2 020	Liu, Ying et collab., 2012a		
Boues	Gérone, Espagne	1 630	Gago-Ferrero et collab., 2011b		
Boues	Sant Feliu de Llobregat, Espagne	1 610	Gago-Ferrero et collab., 2011b		
Boues	Rubí, Espagne	3 830	Gago-Ferrero et collab., 2011b		
Boues	Granollers, Espagne	1 520	Gago-Ferrero et collab., 2011b		
Boues	Reus, Espagne	2 980	Gago-Ferrero et collab., 2011b		
Boues	Montcada i Reixac, Espagne	3 170	Gago-Ferrero et collab., 2011b		
Boues	La Llagosta, Espagne	1 790	Gago-Ferrero et collab., 2011b		
Boues	Lleida, Espagne	730	Gago-Ferrero et collab., 2011b		

Matrice	Localisation	Concentration (ng/g)	Référence
	3-(4-méthylbenzyli	dène) camphor (4-MBC)	
Boues	Vilafranca del Penedès, Espagne	1 530	Gago-Ferrero et collab., 2011b
Boues	Mataró, Espagne	1 790	Gago-Ferrero et collab., 2011b
Boues	El Prat de Llobregat, Espagne	1 840	Gago-Ferrero et collab., 2011b
Boues	Terrassa, Espagne	1 340	Gago-Ferrero et collab., 2011b
Boues	Gavà, Espagne	2 840	Gago-Ferrero et collab., 2011b
Boues	Teià, Espagne	810	Gago-Ferrero et collab., 2011b
Boues	Vic, Espagne	890	Gago-Ferrero et collab., 2011b
Boues	Hasle, Suisse	210 – 2 970	Kupper et collab., 2006
Boues	Chevilly, Suisse	250 – 280	Plagellat et collab., 2006
Boues	Cronay, Suisse	420 – 1 000	Plagellat et collab., 2006
Boues	Thierrens, Suisse	620 – 660	Plagellat et collab., 2006
Boues	Prahins, Suisse	150 – 200	Plagellat et collab., 2006
Boues	Échallens, Suisse	250 – 890	Plagellat et collab., 2006
Boues	Wohlen, Suisse	2 070 – 2 310	Plagellat et collab., 2006
Boues	Wenslingen, Suisse	1 120 – 1 340	Plagellat et collab., 2006
Boues	Seuzach, Suisse	2 810 – 3 340	Plagellat et collab., 2006
Boues	Konolfingen, Suisse	2 820 – 3 520	Plagellat et collab., 2006
Boues	Muri, Suisse	1 490 – 2 150	Plagellat et collab., 2006
Boues	Reinach, Suisse	1 120 – 2 210	Plagellat et collab., 2006

Matrice	Localisation	Concentration (ng/g)	Référence
	3-(4-méthylbenzylidè	ene) camphor (4-MBC)	
Boues	Affoltern am Albis, Suisse	1 660 – 4 980	Plagellat et collab., 2006
Boues	Gossau, Suisse	2 680 – 4 560	Plagellat et collab., 2006
Boues	Zurich, Suisse	610 – 2 260	Plagellat et collab., 2006
	2-éthylhexyl s	alicylate (EHS)	
Boues	Leipzig, Allemagne	280 ± 37	Rodil et collab., 2009c
	Homosa	alate (HS)	
Boues	Leipzig, Allemagne	331 ± 47	Rodil et collab., 2009c
	Isoamyl 4-métho	xycinnamate (IMC)	
Boues	Leipzig, Allemagne	20 ± 3	Rodil et collab., 2009c
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Boues	Leipzig, Allemagne	35 ± 5	Rodil et collab., 2009c
Boues		31,9 ± 3,8	Liu, Ying et collab., 2011b
Doues		30 – 401	Liu, Ying et collab., 2012a
Boues	Gérone, Espagne	≤ 19	Gago-Ferrero et collab., 2011b
Boues	Sant Feliu de Llobregat, Espagne	750	Gago-Ferrero et collab., 2011b
Boues	Rubí, Espagne	1 220	Gago-Ferrero et collab., 2011b
Boues	Granollers, Espagne	780	Gago-Ferrero et collab., 2011b
Boues	Reus, Espagne	1 910	Gago-Ferrero et collab., 2011b
Boues	Montcada i Reixac, Espagne	1 090	Gago-Ferrero et collab., 2011b

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl 4-méth	noxycinnamate (EHMC)	
Boues	La Llagosta, Espagne	≤ 19	Gago-Ferrero et collab., 2011b
Boues	Lleida, Espagne	≤ 19	Gago-Ferrero et collab., 2011b
Boues	Vilafranca del Penedès, Espagne	610	Gago-Ferrero et collab., 2011b
Boues	Mataró, Espagne	1 080	Gago-Ferrero et collab., 2011b
Boues	El Prat de Llobregat, Espagne	3 350	Gago-Ferrero et collab., 2011b
Boues	Terrassa, Espagne	≤ 19	Gago-Ferrero et collab., 2011b
Boues	Gavà, Espagne	2 090	Gago-Ferrero et collab., 2011b
Boues	Teià, Espagne	2 010	Gago-Ferrero et collab., 2011b
Boues	Vic, Espagne	≤ 19	Gago-Ferrero et collab., 2011b
Boues	Vestjord, Norvège	551 – 793	Langford et collab., 2015
Boues	Hias IKS, Norvège	2 501 – 4 689	Langford et collab., 2015
Boues	Hasle, Suisse	30 – 14 450	Kupper et collab., 2006
Boues	Chevilly, Suisse	50 - 60	Plagellat et collab., 2006
Boues	Cronay, Suisse	45 – 95	Plagellat et collab., 2006
Boues	Thierrens, Suisse	35 – 70	Plagellat et collab., 2006
Boues	Prahins, Suisse	30 - 40	Plagellat et collab., 2006
Boues	Échallens, Suisse	105	Plagellat et collab., 2006
Boues	Wohlen, Suisse	85 – 115	Plagellat et collab., 2006
Boues	Wenslingen, Suisse	205 – 390	Plagellat et collab., 2006

Matrice	Localisation	Concentration (ng/g)	Référence
	2-éthylhexyl 4-méth	oxycinnamate (EHMC)	
Boues	Seuzach, Suisse	70 – 130	Plagellat et collab., 2006
Boues	Konolfingen, Suisse	195 – 295	Plagellat et collab., 2006
Boues	Muri, Suisse	35 – 155	Plagellat et collab., 2006
Boues	Reinach, Suisse	10 – 25	Plagellat et collab., 2006
Boues	Affoltern am Albis, Suisse	105 – 115	Plagellat et collab., 2006
Boues	Gossau, Suisse	110 – 180	Plagellat et collab., 2006
Boues	Zurich, Suisse	70 – 150	Plagellat et collab., 2006
	Diéthylhexyl buta	mido triazone (DBT)	
Boues	Leipzig, Allemagne	928 ± 143	Rodil et collab., 2009c
	Octyl-tria	azone (OT)	
Boues	Leipzig, Allemagne	928 ± 143	Rodil et collab., 2009c
Boues	Hasle, Suisse	1 000 – 8 100	Kupper et collab., 2006
Boues	Chevilly, Suisse	1 900 – 2 700	Plagellat et collab., 2006
Boues	Cronay, Suisse	1 300 – 6 300	Plagellat et collab., 2006
Boues	Thierrens, Suisse	1 300 – 2 600	Plagellat et collab., 2006
Boues	Prahins, Suisse	700 – 1 400	Plagellat et collab., 2006
Boues	Échallens, Suisse	3 500 – 4 000	Plagellat et collab., 2006
Boues	Wohlen, Suisse	4 800 – 7 300	Plagellat et collab., 2006
Boues	Wenslingen, Suisse	1 000 – 2 300	Plagellat et collab., 2006

Matrice	Localisation	Concentration (ng/g)	Référence
	Octyl-tri	azone (OT)	
Boues	Seuzach, Suisse	5 800 – 11 100	Plagellat et collab., 2006
Boues	Konolfingen, Suisse	3 300 – 3 400	Plagellat et collab., 2006
Boues	Muri, Suisse	4 200 – 4 300	Plagellat et collab., 2006
Boues	Reinach, Suisse	2 200 – 2 800	Plagellat et collab., 2006
Boues	Affoltern am Albis, Suisse	9 500 – 27 700	Plagellat et collab., 2006
Boues	Gossau, Suisse	3 400 – 12 200	Plagellat et collab., 2006
Boues	Zurich, Suisse	6 500 – 16 900	Plagellat et collab., 2006
	Octocry	/lène (OC)	
Boues	Leipzig, Allemagne	585 ± 90	Rodil et collab., 2009c
Boues	Adélaïde, Australie	138,4 ± 24,3	Liu, Ying et collab., 2011b
Doues		273 – 1 838	Liu, Ying et collab., 2012a
Boues	Gérone, Espagne	2 600	Gago-Ferrero et collab., 2011b
Boues	Sant Feliu de Llobregat, Espagne	2 870	Gago-Ferrero et collab., 2011b
Boues	Rubí, Espagne	9 170	Gago-Ferrero et collab., 2011b
Boues	Granollers, Espagne	2 610	Gago-Ferrero et collab., 2011b
Boues	Reus, Espagne	5 390	Gago-Ferrero et collab., 2011b
Boues	Montcada i Reixac, Espagne	4 150	Gago-Ferrero et collab., 2011b
Boues	La Llagosta, Espagne	4 490	Gago-Ferrero et collab., 2011b
Boues	Lleida, Espagne	2 860	Gago-Ferrero et collab., 2011b

Matrice	Localisation	Concentration (ng/g)	Référence
	Octocr	ylène (OC)	
Boues	Vilafranca del Penedès, Espagne	2 160	Gago-Ferrero et collab., 2011b
Boues	Mataró, Espagne	3 630	Gago-Ferrero et collab., 2011b
Boues	El Prat de Llobregat, Espagne	6 600	Gago-Ferrero et collab., 2011b
Boues	Terrassa, Espagne	2 250	Gago-Ferrero et collab., 2011b
Boues	Gavà, Espagne	3 860	Gago-Ferrero et collab., 2011b
Boues	Teià, Espagne	3 000	Gago-Ferrero et collab., 2011b
Boues	Vic, Espagne	1 060	Gago-Ferrero et collab., 2011b
Boues	Tarragone, Espagne	700 – 1 842	Nieto et collab., 2009
Boues	Vestjord, Norvège	3 448 – 12 661	Langford et collab., 2015
Boues	Hias IKS, Norvège	26 823 – 41 610	Langford et collab., 2015
Boues	Hasle, Suisse	1 200 – 9 520	Kupper et collab., 2006
Boues	Chevilly, Suisse	850 – 900	Plagellat et collab., 2006
Boues	Cronay, Suisse	1 410 – 1 590	Plagellat et collab., 2006
Boues	Thierrens, Suisse	1 190 – 2 480	Plagellat et collab., 2006
Boues	Prahins, Suisse	320 – 530	Plagellat et collab., 2006
Boues	Échallens, Suisse	6 440 – 7 860	Plagellat et collab., 2006
Boues	Wohlen, Suisse	6 300 – 6 930	Plagellat et collab., 2006
Boues	Wenslingen, Suisse	2 580 – 4 400	Plagellat et collab., 2006
Boues	Seuzach, Suisse	4 280 – 7 760	Plagellat et collab., 2006

Matrice	Localisation	Concentration (ng/g)	Référence	
	Octocry	lène (OC)		
Boues	Konolfingen, Suisse	3 740 – 4 560	Plagellat et collab., 2006	
Boues	Muri, Suisse	1 800 – 1 830	Plagellat et collab., 2006	
Boues	Reinach, Suisse	1 600 - 1 800	Plagellat et collab., 2006	
Boues	Affoltern am Albis, Suisse	10 030 – 18 740	Plagellat et collab., 2006	
Boues	Gossau, Suisse	2 800 – 6 930	Plagellat et collab., 2006	
Boues	Zurich, Suisse	10 950 – 14 950	Plagellat et collab., 2006	
Acide 2-phénylbenzimidazole-5-sulfonique (PBSA)				
Boues	Allemagne	≤ 5	Wick et collab., 2010	
Butyl-méthoxy dibenzoylméthane (BMDM)				
Boues	Leipzig, Allemagne	517 ± 78	Rodil et collab., 2009c	

Matrice	Localisation	Concentration (ng/g)	Référence
	Benzophé	enone (BP)	
Sols	Corée	≤ 0,1 – 16,55	Jeon et collab., 2006
î.	Benzophén	one-1 (BP-1)	·
Sols	Corée	≤ 0,5	Jeon et collab., 2006
Sols agricoles	Madrid, Espagne	≤ 0,10	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	5,7 ± 0,3	Sánchez-Brunete et collab., 2011
	Benzophén	one-3 (BP-3)	
Sols	Corée	≤ 0,1 – 3,88	Jeon et collab., 2006
Sols agricoles	Madrid, Espagne	≤ 0,10	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,10	Sánchez-Brunete et collab., 2011
	Benzophén	one-6 (BP-6)	
Sols agricoles	Madrid, Espagne	≤ 0,09 – 0,6	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,09	Sánchez-Brunete et collab., 2011
	Benzophén	one-8 (BP-8)	
Sols	Corée	≤ 0,1 – 4,17	Jeon et collab., 2006
Sols agricoles	Madrid, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011
	4-hydroxybenzo	phénone (4HBP)	
Sols	Corée	≤ 0,1 – 4,91	Jeon et collab., 2006

Tableau 15 – Concentrations en filtres UV mesurées dans les sols

Matrice	Localisation	Concentration (ng/g)	Référence
	4-hydroxybenzo	phénone (4HBP)	
Sols agricoles	Madrid, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011
	2,3,4-trihydroxybe	nzophénone (THB)	
Sols	Corée	≤ 0,1	Jeon et collab., 2006
	Benzhy	drol (BH)	
Sols	Corée	≤ 0,1 – 6,95	Jeon et collab., 2006
	2-éthylhexyl s	alicylate (EHS)	
Sols agricoles	Madrid, Espagne	≤ 0,08	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,08	Sánchez-Brunete et collab., 2011
Homosalate (HS)			
Sols agricoles	Madrid, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011
Sols industriels	Bilboa, Espagne	≤ 0,07	Sánchez-Brunete et collab., 2011

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophé	énone (BP)	
Eau souterraine	Joinville, Brésil	≤ 0,5	Oenning et collab., 2017
	Benzophén	one-1 (BP-1)	
Eau souterraine	Koblenz-Arenberg, Allemagne	≤ 0,5	Wick et collab., 2010
Eau souterraine	Barcelone, Espagne	≤ 1 – 19,4	Gago-Ferrero, Mastroianni et collab., 2013, Jurado et collab., 2014
Eau souterraine	Taoyuan, Taïwan	≤ 0,5	Ho et Ding, 2012
	Benzophén	one-2 (BP-2)	
Eau souterraine	Koblenz-Arenberg, Allemagne	≤ 0,5	Wick et collab., 2010
Fou contorraino	Barcelone, Espagne	≤ 1	Jurado et collab., 2014
		≤ 13	Serra-Roig et collab., 2016
	Benzophén	one-3 (BP-3)	
Eau souterraine	Koblenz-Arenberg, Allemagne	≤5	Wick et collab., 2010
Eau souterraine	Adélaïde, Australie	≤ 14,5	Liu, Ying et collab., 2011b
		≤ 0,5 – 19,2	Jurado et collab., 2014
Eau souterraine	Barcelone, Espagne	≤ 0,5 – 34	Gago-Ferrero, Mastroianni et collab., 2013
		≤ 21	Serra-Roig et collab., 2016
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	63 ± 5	Pintado-Herrera et collab., 2014
Eau souterraine	Taoyuan, Taïwan	≤ 0,3	Ho et Ding, 2012

Tableau 16 – Concentrations en filtres UV mesurées dans les eaux souterraines

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophén	one-4 (BP-4)	
Eau souterraine	Koblenz-Arenberg, Allemagne	≤ 1	Wick et collab., 2010
Fau soutorraino	Barcolono, Espagno	≤ 0,3 – 36,6	Jurado et collab., 2014
Lau soutename	Balcelone, Espagne	≤ 6 – 34,4	Serra-Roig et collab., 2016
	Benzophén	one-8 (BP-8)	
Fau souterraine	Barcelone Espagne	≤ 5	Jurado et collab., 2014
Lau soutename	Darcelone, Espagne	≤ 0,8	Serra-Roig et collab., 2016
Eau souterraine	Taoyuan, Taïwan	≤ 1	Ho et Ding, 2012
	4-hydroxybenzo	ophénone (4HBP)	
		≤ 0,8 - 3,5	Jurado et collab., 2014
Eau souterraine	Barcelone, Espagne	≤ 0,8	Gago-Ferrero, Mastroianni et collab., 2013
		≤7	Serra-Roig et collab., 2016
	4,4'-Dihydroxyben	zophénone (4DHB)	
		≤ 1,5 – 4,1	Jurado et collab., 2014
Eau souterraine	Barcelone, Espagne	≤ 1,5	Gago-Ferrero, Mastroianni et collab., 2013
		≤ 6	Serra-Roig et collab., 2016
	Ethyl PAB	A (Et-PABA)	
Equipolitorraina	Barcolono, Espagno	≤ 1	Jurado et collab., 2014
⊢au souterraine	Barcelone, Espagne	≤ 11	Serra-Roig et collab., 2016

Matrice	Localisation	Concentration (ng/l)	Référence
	Octyl diméthyl F	PABA (OD-PABA)	
Eau souterraine	Barcelone, Espagne	≤ 0,37	Díaz-Cruz et collab., 2012
	- 3-(4-méthylbenzylidè	ene) camphor (4-MBC)	
Eau souterraine	Adélaïde, Australie	≤ 1,1	Liu, Ying et collab., 2011b
		≤ 0,14	Díaz-Cruz et collab., 2012
Fau souterraine	Barcelone, Espagne	≤ 3 – 13,9	Jurado et collab., 2014
Lau souterraine	Darceione, Espagne	≤ 3	Gago-Ferrero, Mastroianni et collab., 2013
		≤ 7 – 73,1	Serra-Roig et collab., 2016
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	46 ± 6	Pintado-Herrera et collab., 2014
	2-éthylhexyl s	alicylate (EHS)	
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	≤ 0,28	Pintado-Herrera et collab., 2014
	Homoso	olate (HS)	
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	11 ± 0,7	Pintado-Herrera et collab., 2014
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	
Eau souterraine	Adélaïde, Australie	≤ 0,9	Liu, Ying et collab., 2011b
Eau souterraine	Joinville, Brésil	≤ 4,6	Oenning et collab., 2017
Eau souterraine	Barcelone, Espagne	770 ± 83	Díaz-Cruz et collab., 2012
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	43 ± 10	Pintado-Herrera et collab., 2014
	Octocry	lène (OC)	
Eau souterraine	Adélaïde, Australie	≤ 6,2	Liu, Ying et collab., 2011b

Matrice	Localisation	Concentration (ng/l)	Référence		
	Octocrylène (OC)				
Eau souterraine	Barcelone, Espagne	≤ 1,4	Díaz-Cruz et collab., 2012		
Eau souterraine	Aquifère alluvial du fleuve Guadalete, Espagne	59 ± 8	Pintado-Herrera et collab., 2014		
Acide 2-phénylbenzimidazole-5-sulfonique (PBSA)					
Eau souterraine	Koblenz-Arenberg, Allemagne	≤ 1	Wick et collab., 2010		

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzophé	énone (BP)	
Eau de piscine	Chine	18 800	Ye et collab., 2011
Eau de piscine	Shanghai, Chine	56,6 – 282	Wu et collab., 2017
		≤ 300	Zhang et Lee, 2013
Eau de piscine	Singapour	≤ 200	Zhang et Lee, 2012a
		≤ 1,8	Liew et collab., 2018
	Benzophén	one-1 (BP-1)	
Eau de piscine	Chine	8 700	Ye et collab., 2011
Eau de piscine	Shanghai, Chine	1,8 – 10,7	Wu et collab., 2017
Eau de piscine	Espagne	≤ 6,1	Vila et collab., 2017
	Benzophén	one-2 (BP-2)	
Eau de piscine	Shanghai, Chine	≤ 0,1	Wu et collab., 2017
	Benzophén	one-3 (BP-3)	
Eau de piscine	Chine	4 500	Ye et collab., 2011
Eau de piscine	Shanghai, Chine	8,3 – 30	Wu et collab., 2017
Eau de piscine	Valence, Espagne	≤ 110	Vidal et collab., 2010
Eau de piscine	Alicante, Espagne	≤ 110	Vidal et collab., 2010
Eau de piscine	Algimia de Almonacid, Espagne	180 ± 20	Chisvert et collab., 2017
Eau de piscine	Almudaina, Espagne	538 ± 50	Benedé et collab., 2016

Tableau 17 – Concentrations en filtres UV mesurées dans les eaux de piscine

Matrice	Localisation	Concentration (ng/l)	Référence		
	Benzophér	none-3 (BP-3)			
Eau de piscine	Majorque, Espagne	≤ 620	Suárez et collab., 2016		
Eau de piscine	Ames, Iowa, États-Unis	≤ 17	Trujillo-Rodriguez et collab., 2018		
Equido pissino	Épire Grèce	4,2 - 10,0	Giokas et collab., 2004		
Eau de piscine	Epire, Grece	2 400 – 3 300	Lambropoulou et collab., 2002		
Eau de piscine	Ligurie, Italie	25 – 216	Nguyen et collab., 2011		
Eau de piscine	République tchèque	26 – 620	Grabicova et collab., 2013		
		≤ 800	Zhang et Lee, 2013		
Eau de piscine	Singapour	≤ 500	Zhang et Lee, 2012a		
		≤ 9,7	Liew et collab., 2018		
Eau de piscine	Ljubljana, Slovénie	103	Cuderman et Heath, 2007		
Eau de piscine	Portorož, Slovénie	400	Cuderman et Heath, 2007		
	Benzophér	none-4 (BP-4)			
Eau de piscine	Shanghai, Chine	18,4 – 131	Wu et collab., 2017		
Eau de piscine	République tchèque	3,3 – 35	Grabicova et collab., 2013		
Benzophénone-8 (BP-8)					
Eau de piscine	Espagne	≤ 8,2	Vila et collab., 2017		
	4-hydroxybenzophénone (4HBP)				
Eau de piscine	Chine	15 400	Ye et collab., 2011		
Eau de piscine	Shanghai, Chine	≤ 0,1 – 4,7	Wu et collab., 2017		

Matrice	Localisation	Concentration (ng/l)	Référence	
	2,3,4'-trihydroxyb	enzophénone (THB)		
Eau de piscine	Shanghai, Chine	≤ 1	Wu et collab., 2017	
	Benzh	ydrol (BH)		
Eau de piscine	Singapour	≤ 9,1	Liew et collab., 2018	
	Octyl diméthyl	PABA (OD-PABA)		
Equido pissipo	Espagno	≤ 5,4	Vila et collab., 2016	
Lau de piscilie	Lspagne	2,3 – 1 200	Vila et collab., 2017	
Eau de piscine	Majorque, Espagne	≤ 890	Suárez et collab., 2016	
Eau de piscine	Valence, Espagne	≤ 70	Vidal et collab., 2010	
Eau de piscine	Alicante, Espagne	≤ 70	Vidal et collab., 2010	
Eau de piscine	Algimia de Almonacid, Espagne	≤ 88,2	Chisvert et collab., 2017	
Eau de piscine	Almudaina, Espagne	≤ 99	Benedé et collab., 2016	
Eau de piscine	Ames, Iowa, États-Unis	≤5	Trujillo-Rodriguez et collab., 2018	
Eau de piscine	Épire, Grèce	≤ 270 – 2 100	Lambropoulou et collab., 2002	
Eau de piscine	Ljubljana, Slovénie	≤ 37	Cuderman et Heath, 2007	
Eau de piscine	Portorož, Slovénie	17	Cuderman et Heath, 2007	
3-(4-méthylbenzylidène) camphor (4-MBC)				
	Espagno	1,2 – 59	Vila et collab., 2016	
Eau de piscine	Espagne	180 – 5 900	Vila et collab., 2017	
Eau de piscine	Valence, Espagne	≤ 60	Vidal et collab., 2010	

Matrice	Localisation	Concentration (ng/l)	Référence
	3-(4-méthylbenzylidè	ene) camphor (4-MBC)	
Eau de piscine	Alicante, Espagne	≤ 200	Vidal et collab., 2010
Eau de piscine	Majorque, Espagne	≤ 80	Suárez et collab., 2016
Eau de piscine	Algimia de Almonacid, Espagne	93 ± 9	Chisvert et collab., 2017
Eau de piscine	Almudaina, Espagne	178 ± 14	Benedé et collab., 2016
Eau de piscine	Épire, Grèce	3,8 - 6,9	Giokas et collab., 2004
Eau de piscine	Singapour	≤ 1,9	Liew et collab., 2018
Eau de piscine	Ljubljana, Slovénie	≤ 146	Cuderman et Heath, 2007
Eau de piscine	Portorož, Slovénie	330	Cuderman et Heath, 2007
	2-éthylhexyl s	alicylate (EHS)	
Eau de piscine	Espagne	15 – 141 000	Vila et collab., 2016
Eau de piscine	Espagne	32 – 47 000	Vila et collab., 2017
Eau de piscine	Majorque, Espagne	≤ 3 939	Suárez et collab., 2016
Eau de piscine	Algimia de Almonacid, Espagne	645 ± 60	Chisvert et collab., 2017
Eau de piscine	Almudaina, Espagne	732 ± 50	Benedé et collab., 2016
Eau de piscine	Ames, Iowa, États-Unis	18 – 34	Trujillo-Rodriguez et collab., 2018
		≤ 5 000	Zhang et Lee, 2013
	Singapour	≤ 5 000	Zhang et Lee, 2012a
Lau de piscilie	Singapour	≤ 2,6	Liew et collab., 2018
		≤ 0,5 - 8	Liew et collab., 2018

Matrice	Localisation	Concentration (ng/l)	Référence	
	Benzyl sa	alicylate (BS)		
Eau de piscine	Ames, Iowa, États-Unis	≤ 55	Trujillo-Rodriguez et collab., 2018	
Fou de pissine	Fanama	94 – 420	Vila et collab., 2017	
Eau de piscilie	Espagne	7,2 – 1 200	Vila et collab., 2016	
	Homos	salate (HS)	:	
Equido pissipo	Espagno	12 – 27 000	Vila et collab., 2016	
Lau de piscilie	Espagne	29 – 58 000	Vila et collab., 2017	
Eau de piscine	Majorque, Espagne	≤ 3 415 – 34 600	Suárez et collab., 2016	
Eau de piscine	Algimia de Almonacid, Espagne	169 ± 10	Chisvert et collab., 2017	
Eau de piscine	Almudaina, Espagne	366 ± 9	Benedé et collab., 2016	
Eau de piscine	Ames, Iowa, États-Unis	≤ 13 – 32	Trujillo-Rodriguez et collab., 2018	
		≤ 1 000	Zhang et Lee, 2013	
Eau de piscine	Singapour	≤ 2,1	Liew et collab., 2018	
		≤ 1 000	Zhang et Lee, 2012a	
Eau de piscine	Ljubljana, Slovénie	≤ 226	Cuderman et Heath, 2007	
Eau de piscine	Portorož, Slovénie	≤ 226	Cuderman et Heath, 2007	
Isoamyl 4-méthoxycinnamate (IMC)				
Fau de pissipo	Espagno	15 – 3 700	Vila et collab., 2016	
Eau de piscilie	сърауне	10 – 26 000	Vila et collab., 2017	
Eau de piscine	Valence, Espagne	≤ 160	Vidal et collab., 2010	

Matrice	Localisation	Concentration (ng/l)	Référence	
	Isoamyl 4-métho:	kycinnamate (IMC)		
Eau de piscine	Alicante, Espagne	700 ± 300	Vidal et collab., 2010	
Eau de piscine	Algimia de Almonacid, Espagne	55 ± 5	Chisvert et collab., 2017	
Eau de piscine	Almudaina, Espagne	283 ± 30	Benedé et collab., 2016	
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)	;	
Eau de piscine	Espagne	7,6 – 1 900	Vila et collab., 2016	
Eau de piscine	Espagne	37 – 7 700	Vila et collab., 2017	
Eau de piscine	Valence, Espagne	≤ 190	Vidal et collab., 2010	
Eau de piscine	Algimia de Almonacid, Espagne	285 ± 50	Chisvert et collab., 2017	
Eau de piscine	Almudaina, Espagne	338 ± 30	Benedé et collab., 2016	
Eau de piscine	Alicante, Espagne	≤ 190	Vidal et collab., 2010	
Eau de piscine	Ames, Iowa, États-Unis	≤ 13 – 81	Trujillo-Rodriguez et collab., 2018	
Eau de piscine	Épire, Grèce	3,0 - 4,5	Giokas et collab., 2004	
Eau de piscine	Ligurie, Italie	53 – 86	Nguyen et collab., 2011	
Eau de piscine	Ljubljana, Slovénie	≤ 238	Cuderman et Heath, 2007	
Eau de piscine	Portorož, Slovénie	≤ 238	Cuderman et Heath, 2007	
Octocrylène (OC)				
	Espectro	120 – 3 804 000	Vila et collab., 2016	
Eau de piscine	Espagne	44 – 540 000	Vila et collab., 2017	
Eau de piscine	Valence, Espagne	≤ 3 000	Vidal et collab., 2010	

Matrice	Localisation	Concentration (ng/l)	Référence	
	Octocry	lène (OC)		
Eau de piscine	Algimia de Almonacid, Espagne	129 ± 4	Chisvert et collab., 2017	
Eau de piscine	Almudaina, Espagne	624 ± 50	Benedé et collab., 2016	
Eau de piscine	Alicante, Espagne	≤ 3 000	Vidal et collab., 2010	
Eau de piscine	Majorque, Espagne	≤ 2 500	Suárez et collab., 2016	
Eau de piscine	Ames, Iowa, États-Unis	≤ 70	Trujillo-Rodriguez et collab., 2018	
Eau de piscine	Ljubljana, Slovénie	15	Cuderman et Heath, 2007	
Eau de piscine	Portorož, Slovénie	≤ 266	Cuderman et Heath, 2007	
	Étocryl	ène (Eto)		
Eau de piscine	Ames, Iowa, États-Unis	≤ 41	Trujillo-Rodriguez et collab., 2018	
Equida piscipa	Espagne	57	Vila et collab., 2017	
Eau de piscilie		≤ 3,8 – 190	Vila et collab., 2016	
	Acide 2-phénylbenzimida	azole-5-sulfonique (PB	SA)	
Eau de piscine	République Tchèque	240 – 13 000	Grabicova et collab., 2013	
	Butyl-méthoxy diben	zoylméthane (BMDM)		
Eau de piscine	Épire, Grèce	≤ 24	Giokas et collab., 2004	
Menthyl anthranilate (MA)				
Eau de piscine	Ames, Iowa, États-Unis	≤ 5 – 12	Trujillo-Rodriguez et collab., 2018	
Fau de pissino	Espagne	4,2	Vila et collab., 2017	
Lau de pisone	Lohadine	≤ 5,8	Vila et collab., 2016	

Matrice	Localisation	Concentration (ng/l)	Référence
	Benzoph	iénone (BP)	
Eau du robinet	États-Unis	130	Stackelberg et collab., 2004
Eau du robinet	San Diego, Californie, États-Unis	260	Loraine et Pettigrove, 2006
		≤ 0,5	Ge et Lee, 2012
Eau du robinet	Singapour	≤ 300	Zhang et Lee, 2013
		≤ 200	Zhang et Lee, 2012a
	Benzophé	none-1 (BP-1)	•
Eau du robinet	Singapour, Singapour	≤ 1	Ge et Lee, 2012
Eau du robinet	Shenzhen, Chine	≤ 80,19	Li, Law et collab., 2018
	Benzophé	none-3 (BP-3)	
Eau du robinet	Shenzhen, Chine	≤ 3,9 – 12,57	Li, Law et collab., 2018
Eau du robinet	Barcelone, Espagne	≤ 7,4 – 295	Díaz-Cruz et collab., 2012
Eau du robinet	Burjassot, Espagne	≤ 0,8	Román et collab., 2011
Eau du robinet	Ames, Iowa, États-Unis	≤ 17	Trujillo-Rodriguez et collab., 2018
		≤ 1	Ge et Lee, 2012
Eau du robinet	Singapour	≤ 800	Zhang et Lee, 2013
		≤ 500	Zhang et Lee, 2012a
	Benzophé	none-8 (BP-8)	
Eau du robinet	Shenzhen, Chine	≤ 28,1	Li, Law et collab., 2018

Tableau 18 – Concentrations en filtres UV mesurées dans les eaux du robinet

Matrice	Localisation	Concentration (ng/l)	Référence		
	4-hydroxybenzo	phénone (4HBP)			
Eau du robinet	Shenzhen, Chine	≤ 83,14	Li, Law et collab., 2018		
	Octyl diméthyl P	ABA (OD-PABA)			
Eau du robinet	Shenzhen, Chine	≤ 2,77	Li, Law et collab., 2018		
Eau du robinet	Barcelone, Espagne	≤ 1,2 – 11	Díaz-Cruz et collab., 2012		
Eau du robinet	Burjassot, Espagne	≤ 3,1	Román et collab., 2011		
Eau du robinet	Ames, Iowa, États-Unis	≤5	Trujillo-Rodriguez et collab., 2018		
	3-(4-méthylbenzylidène) camphor (4-MBC)				
Eau du robinet	Shenzhen, Chine	≤ 7,16	Li, Law et collab., 2018		
Eau du robinet	Espagne	≤ 0,29	Vila et collab., 2016		
Eau du robinet	Barcelone, Espagne	≤ 0,14 – 35	Díaz-Cruz et collab., 2012		
Eau du robinet	Burjassot, Espagne	≤ 19,3	Román et collab., 2011		
Eau du robinet	Singapour, Singapour	≤ 1	Ge et Lee, 2012		
	3-benzylidène (camphor (3-BC)			
Eau du robinet	Shenzhen, Chine	≤ 13,93	Li, Law et collab., 2018		
	2-éthylhexyl s	alicylate (EHS)			
Eau du robinet	Espagne	27	Vila et collab., 2016		
Eau du robinet	Burjassot, Espagne	160	Román et collab., 2011		
Eau du robinet	Ames, Iowa, États-Unis	≤ 3,4	Trujillo-Rodriguez et collab., 2018		
Eau du robinet	Singapour	≤ 5 000	Zhang et Lee, 2013, 2012a		

Matrice	Localisation	Concentration (ng/l)	Référence							
	Benzyl salicylate (BS)									
Eau du robinet	Ames, Iowa, États-Unis	≤ 55	Trujillo-Rodriguez, Nan et collab., 2018							
Eau du robinet	Espagne	≤ 27	Vila et collab., 2016							
	Homosalate (HS)									
Eau du robinet	Espagne	33	Vila et collab., 2016							
Eau du robinet	Burjassot, Espagne	≤ 0,4	Román et collab., 2011							
Eau du robinet	Ames, Iowa, États-Unis	≤ 13	Trujillo-Rodriguez et collab., 2018							
Eau du robinet	Singapour	≤ 1 000	Zhang et Lee, 2013, 2012a							
	Isoamyl 4-méthoz	xycinnamate (IMC)								
Eau du robinet	Espagne	≤ 5,8	Vila et collab., 2016							
Eau du robinet	Burjassot, Espagne	65	Román et collab., 2011							
Eau du robinet	Shenzhen, Chine	≤ 35,9	Li, Law et collab., 2018							
	2-éthylhexyl 4-métho	oxycinnamate (EHMC)								
Eau du robinet	Espagne	8,7	Vila et collab., 2016							
Eau du robinet	Barcelone, Espagne	2,9 – 256	Díaz-Cruz et collab., 2012							
Eau du robinet	Burjassot, Espagne	126	Román et collab., 2011							
Eau du robinet	Ames, Iowa, États-Unis	≤ 13	Trujillo-Rodriguez et collab., 2018							
Eau du robinet	San Diego, Californie, États-Unis	450	Loraine et Pettigrove, 2006							

Matrice	Localisation	Concentration (ng/l)	Référence					
Octocrylène (OC)								
Eau du robinet	Shenzhen, Chine	≤ 3,21	Li, Law et collab., 2018					
Eau du robinet	Espagne	30	Vila et collab., 2016					
Eau du robinet	Barcelone, Espagne	33 – 167	Díaz-Cruz et collab., 2012					
Eau du robinet	Ames, Iowa, États-Unis	≤ 70	Trujillo-Rodriguez et collab., 2018					
Eau du robinet	Burjassot, Espagne	≤ 5,9	Román et collab., 2011					
	Étocryle	ène (Eto)						
Eau du robinet	Ames, Iowa, États-Unis	≤ 41	Trujillo-Rodriguez et collab., 2018					
Eau du robinet	Espagne	≤ 3,8	Vila et collab., 2016					
Menthyl anthranilate (MA)								
Eau du robinet	Ames, Iowa, États-Unis	≤ 5	Trujillo-Rodriguez et collab., 2018					
Eau du robinet	Espagne	≤ 5,8	Vila et collab., 2016					

Filtre UV	FBC	Espèce	Potentiel de bioaccumulation*	Référence
Benzophénone	3,4 – 9,2	Carpe commune (<i>Cyprinus carpio</i>)	Faible	HSDB, 2020
(BF)	8,1	Estimation à partir du Koe		ChemSpider, 2020
Bonzophénone 1	5,5	Estimation à partir du Koe	Faible	ChemSpider, 2020
Benzophenone-1 (BP-1)	15 – 108	Poisson zèbre (<i>Danio rerio</i>)	Faible	Bluthgen et collab., 2012
Benzophénone-2 (BP-2)	1,9	Méné à grosse tête (<i>Pimephales promelas</i>)		HSDB, 2020
	4	Estimation à partir du Koe	Faible	ChemSpider, 2020
	0,3 – 6	Méné à grosse tête (<i>Pimephales promelas</i>)		Weisbrod et collab., 2007
	33 – 160	Carpe commune (<i>Cyprinus carpio</i>)		HSDB, 2020
Benzophénone-3 (BP-3)	971	Huître américaine (<i>Crassostrea</i> <i>virginica</i>) et Moule crochue (<i>Ischadium</i> <i>recurvum</i>)	Faible	He et collab., 2019a
	23,9	Estimation à partir du Koe		ChemSpider, 2020
	19 – 94	Poisson-zèbre (<i>Danio rerio</i>)	Faible	Bluthgen et collab., 2012
Benzophénone-4 (BP-4)	3,2	Estimation à partir du K _{oe}	Faible	HSDB, 2020
Benzophénone-6 (BP-6)	29,2	Estimation à partir du Koe	Faible	ChemSpider, 2020

Tableau 19 – Facteurs de bioconcentration (FBC) rapportés dans la littérature pour les filtres UV

Filtre UV	FBC	Espèce	Potentiel de bioaccumulation*	Référence
Benzophénone-8 (BP-8)	25,3	Estimation à partir du Koe	Faible	ChemSpider, 2020
Benzophénone-10 (BP-10)	39,4	Estimation à partir du Koe	Faible	ChemSpider, 2020
Bonzonkénono 12	209,5	Estimation à partir du Koe	Faible	ChemSpider, 2020
(BP-12)	70 – 190	Carpe commune (<i>Cyprinus carpio</i>)	Faible	HSDB, 2020
2-hydroxybenzophénone (2HBP)	14,8	Estimation à partir du Koe	Faible	ChemSpider, 2020
3-hydroxybenzophénone (3HBP)	3,3	Estimation à partir du K _{oe}	Faible	ChemSpider, 2020
4-hydroxybenzophénone (4HBP)	6,7	Estimation à partir du Koe	Faible	ChemSpider, 2020
2,3,4-trihydroxybenzophénone (THB)	5	Estimation à partir du K _{oe}	Faible	ChemSpider, 2020
4,4'-Dihydroxy benzophénone (4DHB)	1,4	Estimation à partir du Koe	Faible	ChemSpider, 2020
4-phényl benzophénone (4PB)	174,4	Estimation à partir du K _{oe}	Faible	ChemSpider, 2020
2,2'-dihydroxybenzophénone (2,2'-DHBP)	21,9	Estimation à partir du Koe	Faible	ChemSpider, 2020
2,4,4'-trihydroxybenzophénone (2,4,4'-THBP)	2,4	Estimation à partir du K _{oe}	Faible	ChemSpider, 2020
Diéthylamino hydroxybenzoyl hexyl benzoate (DHHB)	3 151	Estimation à partir du Koe	Modéré	ChemSpider, 2020

Filtre UV	FBC	Espèce	Potentiel de bioaccumulation*	Référence
Benzhydrol (BH)	5,1	Estimation à partir du Koe	Faible	ChemSpider, 2020
Acide para-aminobenzoïque (PABA)	3	Estimation à partir du Koe	Faible	HSDB, 2020
Ethyl PABA (Et-PABA)	5	Estimation à partir du Koe	Faible	HSDB, 2020
Octyl diméthyl PABA	5 486	Estimation à partir du Kœ	Élevé	Environment Agency, 2008
	2 960		Modéré	HSDB, 2020
2 (4 máthulhanzulidána) comphar	7 224	Estimation à partir du K _{oe}	Élevé	ChemSpider, 2020
3-(4-méthylbenzylidéne) camphor (4-MBC)	9 700 – 23 000	Gardon (Rutilus rutilus)	Élevé	Fent, Zenker et collab., 2010
	2 738	Estimation à partir du Koe	Modéré	ChemSpider, 2020
(3-BC)	313	Méné à grosse tête (Pimephales promelas)	Faible	Kunz et collab., 2006
2-éthylhexyl salicylate (EHS)	7 856	Estimation à partir du Koe	Élevé	ChemSpider, 2020
Benzyl salicylate (BS)	320	Estimation à partir du K _{oe}	Faible	HSDB, 2020
	11 080	Estimation à partir du Koe	Élevé	ChemSpider, 2020
Homosalate (HS)	710	Huître américaine (<i>Crassostrea virginica</i>) et Moule crochue (<i>Ischadium recurvum</i>)	Faible	He et collab., 2019a
Isoamyl 4-méthoxycinnamate (IMC)	429,7	Estimation à partir du Koe	Faible	ChemSpider, 2020

Filtre UV	FBC	Espèce	Potentiel de bioaccumulation*	Référence
	174 – 433	Truite arc-en-ciel (Oncorhynchus mykiss)	Faible	HSDB, 2020
	500 – 1 500	Barbeau commun (<i>Barbus barbus</i>)	Faible à modéré	Fent, Zenker et collab., 2010
2-éthylhexyl 4-méthoxycinnamate (EHMC)	167 – 333	Chevesne (<i>Leuciscus cephalus</i>)	Faible	Fent, Zenker et collab., 2010
	5 890	Huître américaine (<i>Crassostrea virginica</i>) et Moule crochue (<i>Ischadium recurvum</i>)	Élevé	He et collab., 2019a
	5 856	Estimation à partir du Koe	Élevé	ChemSpider, 2020
	39 700	Estimation à partir du Koe	Élevé	ChemSpider, 2020
	387	Huître américaine (<i>Crassostrea virginica</i>) et Moule crochue (<i>Ischadium recurvum</i>)	Faible	He et collab., 2019a
Octocrylène (OC)	41 – 136		Faible	Bluthgen et collab., 2014
	56 – 81	Poisson-zèbre (<i>Danio rerio</i>)		Zhang, Ma et collab., 2016
	858			Pawlowski et collab., 2019
Étocrylène (Eto)	243,5	Estimation à partir du Koe	Faible	ChemSpider, 2020
Acide 2-phénylbenzimidazole-5-sulfonique (PBSA)	3,2	Estimation à partir du Koe	Faible	ChemSpider, 2020
Butyl-méthoxy dibenzoylméthane (BMDM)	113	Estimation à partir du Koe	Faible	HSDB, 2020

Filtre UV	FBC	Espèce	Potentiel de bioaccumulation*	Référence
Menthyl anthranilate (MA)	13 620	Estimation à partir du K _{oe}	Élevé	ChemSpider, 2020

* Le potentiel de bioaccumulation est jugé faible si le FBC est inférieur à 1 000. Il est jugé modéré si le FBC est supérieur à 1 000, mais inférieur à 5 000. Le potentiel de bioaccumulation est jugé élevé si le FBC est supérieur à 5 000.

Durée d'exposition	Concentration accumulée (ng/g)				
(jours)	4-MBC	BP-3	BP-4	OC	OD-PABA
0	10,5	≤ 3	6	21	≤ 0,2
1	418	80	263	327	30,5
2	528,5	66	270,5	451	46
4	437	51,5	328	144	11
8	≤ 3	56	429	469	1
14	801	67	520	559,5	13,5
22	411	62	739	712,5	11
30	9,5	59	615	833	≤ 0,2
32	≤ 3	13	90	141	≤ 0,2
35	≤ 3	≤ 3	6	≤ 3	≤ 0,2
39	≤ 3	≤ 3	91	41	≤ 0,2
50	5,5	≤ 3	186,5	32	≤ 0,2

Tableau 20 – Accumulation de filtres UV chez *Mytilus galloprovincialis* après une exposition de 30 jours suivie d'une période de dépuration de 20 jours

Source : Vidal-Liñán et collab., 2018.

Tableau 21 – Concentrations en filtres UV, telles qu'elles sont rapportées dans la littérature, chez des organismes aquatiques prélevés en milieu naturel

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence		
Benzophénone (BP)							
Crapet arlequin (<i>Lepomis macrochirus</i>)	Poissons	Muscles	Pecan et Clear Creek, Denton, Texas, États-Unis	37 – 90	Mottaleb et collab., 2009		
Catostomus insignis			Rivière Gila, Nouveau-Mexique, États-Unis	≤ 16			
		Benzoj	phénone-1 (BP-1)	•			
Hijiki (Sargassum fusiforme)	 Plantes aquatiques 		Mer de Chine orientale	≤ 10	Han et collab., 2016		
Porphyra sp.		Organisme entier					
Varech							
Chamelea gallina		Organisme entier	Delta de l'Èbre, Espagne	≤ 6	Cunha et collab., 2015b		
Crabe		Chair	Océans Atlantique et Pacifique	≤ 3	Cunha et collab., 2018		
Crevette			Mer de Chine orientale	≤ 10	Han et collab., 2016		
Laternula elliptica			Baie Erebus, Antarctique	≤ 2	Emnet et collab., 2015		
Moules méditerranéennes et	Invertébrés		Delta de l'Èbre, Espagne				
communes		Organisme entier	Estuaire du Tage, Espagne	≤ 6	Cunha et collab., 2015b		
(Mytilus galioprovincialis et M. edulis)			Estuaire du Pô, Italie				
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 3 – 94,2	Cunha et collab., 2018		
Oursin antarctique (Sterechinus neumayeri)			Baie Erebus, Antarctique	≤2	Emnet et collab., 2015		

Espèce	Niveau trophique	Organe Localisation		Concentration (ng/g)	Référence			
		Benzo	pphénone-1 (BP-1)					
Achigan à grande bouche (<i>Micropterus salmoides</i>)								
Ablette (Alburnus alburnus)		Poissons Muscles	Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015			
Anguille d'Europe (<i>Anguilla anguilla</i>)								
Bar rayé (<i>Morone saxatilis</i>)			Chungli, Taïwan	1,7	Tsai et collab., 2014			
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	≤ 3 – 36,1	Cunha et collab., 2018			
Bocasson émeraude (<i>Trematomus bernacchii</i>)	Poissons		ns Muscles	sons Muscles	Poissons Muscles	Baie Erebus, Antarctique	≤2	Emnet et collab., 2015
			Fleuve Llobregat, Espagne	≤4	Gago-Ferrero, Díaz-Cruz et collab., 2015			
Carpe commune (<i>Cyprinus carpio</i>)			Fleuve Èbre, Espagne					
			Fleuve Guadalquivir, Espagne					
Crapet-soleil (<i>Lepomi</i> s gibbosus)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015			
Croassement rougeolaire (Larimichthys polyactis)			Mer de Chine orientale	≤ 10	Han et collab., 2016			
Flet commun (Platichthys flesus)			Escaut occidental, Pays-Bas	≤ 6	Cunha et collab., 2015b			
Goujon ibérique (<i>Gobio lozanoi</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015			

Espèce	Niveau trophique	Organe	Organe Localisation		Référence		
		Benzo	phénone-1 (BP-1)				
Grand brochet (<i>Esox lucius</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015		
Haricot à grosse tête (<i>Trichiurus lepturus</i>)			Mer de Chine orientale	≤ 10	Han et collab., 2016		
luciobarbus graelleii			Fleuve Llobregat, Espagne	E A			
Luciobalbus graensn		Fleuve Èbre, Espagne	24	Gago-Ferrero, Díaz-Cruz			
Luciobarbus guiraonis		Muscles	Fleuve Júcar, Espagne	≤ 4	et collab., 2015		
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne	≤ 4			
Maquereau (Scomber scombrus)			Océans Atlantique et Pacifique	≤ 3 – 5,0	Cunha et collab., 2018		
Mulet lebranche (<i>Mugil liza</i>)	Poissons		Muscles	s Muscles	Baie de Guanabara, Brésil	≤ 0,93	Molins-Delgado, Muñoz et collab., 2018
Morue			Chungli, Taïwan	1	Tsai et collab., 2014		
Morue de l'Atlantique (<i>Gadus morhua</i>)					Océans Atlantique et Pacifique	≤3	Cunha et collab., 2018
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤ 6	Cunha et collab., 2015b		
Nase ibérique (<i>Pseudochondrostoma polylepis</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015		
Saumon			Chungli, Taïwan	3,6	Tsai et collab., 2014		
Silure glane (<i>Silurus glanis</i>)			Fleuve Èbre, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015		

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence			
		Benzoj	ohénone-1 (BP-1)					
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	5 – 34,2	Cunha et collab., 2018			
Tilapia		Muscles	Chungli, Taïwan	0,7	Tsa et collab., 2014			
Truite commune (Salmo trutta)	Poissons		Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015			
Bocasson émeraude (<i>Trematomus bernacchii</i>)		Foie	Baie Erebus, Antarctique	≤ 2	Emnet et collab., 2015			
Mulet lebranche				Baje de Guanabara, Brésil	3,71 – 17,1	Molins-Delgado, Muñoz		
(Mugil liza)		Branchies	Dale de Gualiabara, Dresil	≤ 0,93 – 100	et collab., 2018			
Busard des roseaux (<i>Circus aeruginosus</i>)			Œufs Parc national de Doñana, Espagne	40,6				
Canard chipeau (<i>Anas strepera</i>)				23,3 – 87,3				
Cigogne blanche (<i>Ciconia ciconia</i>)				≤ 0,85				
Faucon crécerelle (<i>Falco tinnunculus</i>)	Oiseaux	Œufs		27,9 – 53,5	Molins-Delgado, Manez et collab., 2017			
Goéland railleur (Chroicocephalus genei)				≤ 0,85				
Mouette rieuse (Chroicocephalus ridibundus)				≤ 0,85 – 677				
Sterne hansel (Gelochelidon nilotica)				29 – 66,1				
Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence			
---	-----------------------	------------------	--------------------------------	-------------------------	---------------------------	--	--	--
Benzophénone-2 (BP-2)								
Hijiki (Sargassum fusiforme)	Plantas							
Porphyra sp.	aquatiques	Organisme entier	Mer de Chine orientale	≤ 10	Han et collab., 2016			
Varech								
Crevette			Mer de Chine orientale	≤ 10	Han et collab., 2016			
Méduse	Invertébrés	Organisme entier	Lac Jellyfish, Palaos	0,67 – 7,34	Boll of collab 2017			
(Mastigias papua)			Lac Ngermeuangel, Palaos	≤ ld – 3,33	Bell et collad., 2017			
Croassement rougeolaire (Larimichthys polyactis)	- Poissons	Muscles	Mar da China ariantala	< 10	Han et collab., 2016			
Haricot à grosse tête (<i>Trichiurus lepturus</i>)				5 10				
		Benzo	phénone-3 (BP-3)					
Sargassum fusiforme				≤ 10	Han et collab., 2016			
Porphyra sp.	Plantes aquatiques	Organisme entier	Mer de Chine orientale					
Varech								
Bulot (<i>Buccinum undatum</i>)			Rivière des Perles, Chine	≤ 0,08	Peng et collab., 2015			
Chamelea gallina	Invortábráo	Organisme entier	Delta de l'Èbre, Espagne	≤ 20	Cunha et collab., 2015b			
Coque commune (Cerastoderma edule)	IIIVEILEDIES		Galice, Espagne	≤ 28	Negreira et collab., 2013			
Crabe		Chair	Océans Atlantique et Pacifique	≤ 0,5	Cunha et collab., 2018			

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Benzophénone-3 (BP-3)									
Crabe enragé (Carcinus maenas)			Oslofierd Nervège	≤ 30	Langford at callab 2015					
Crevette nordique du Canada (<i>Pandalus borealis</i>)		Organisme entier	Osioljulu, Nolvege	≤ 30 – 68,9	Langiora et collab., 2013					
Crevette			Mer de Chine orientale	≤ 10	Han et collab., 2016					
			Waikiki, Oahu, Hawaii, États-Unis	≤ 3 – 570,5						
Corail		Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 3 – 393,9	Mitchelmore et collab., 2019					
			Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 3 – 102,3						
Écrevisse virile (Orconectes virilis)	-	Chair	Baltimore, Maryland, États-Unis	≤ 0,6 – 51,4	He et collab., 2017					
Gammare (<i>Gammarus</i> sp.)	Invertébrés		Rivière Marbach, Suisse	≤ 6	Fent, Zenker et collab., 2010					
Huître américaine (<i>Crassostrea virginica</i>)			Baie de Chesapeake, Maryland, États-Unis	17 – 118	He et collab., 2019a					
Laternula elliptica				36,8 – 40,6	He et collab., 2017					
Laternula elliptica		Organisme entier	Baie Erebus, Antarctique	9,2 – 112	Emnet et collab., 2015					
Méduse			Lac Jellyfish, Palaos	2,55 – 6,99	Dall at callab 2017					
(Mastigias papua)			Lac Ngermeuangel, Palaos	0,76 – 2,63	Bell et collab., 2017					
Moule crochue			Paia da Chaganagka Mandand Étata Unia	22,2 ± 1,4	He et collab., 2019a					
(Ischadium recurvum)			Dale de Chesapeake, Maryland, Etats-Unis	≤ 0,6	He et collab., 2017					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Benzoj	ohénone-3 (BP-3)		
Moule méditerranéenne (<i>Mylitus galloprovincialis</i>)			Galice, Espagne	≤ 28	Negreira et collab., 2013
Moule zébrée			Lac de Greifen, Suisse	< 6	Fent, Zenker et collab.,
(Dreissena polymorpha)			Rivière Glatt, Suisse	20	2010
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 0,5 – 85,5	Cunha et collab., 2018
		Organisme entier	Viana do Castelo, Portugal	≤ 15	Castro et collab., 2018
	Invertébrés		Leça da Palmeira, Portugal	≤ 15 – 622,1	
			Plage de Vagueira, Portugal	≤ 15 – 106,9	
			Algés, Portugal	≤ 15 – 121,4	
Moules méditerranéennes et			Costa da Caparica, Portugal	≤ 15 – 51,2	
(Mytilus galloprovincialis et M. edulis)			Aljezur, Portugal	≤ 15	
			Faro, Portugal	≤ 15	
			Delta de l'Èbre, Espagne	≤ 3	
			Estuaire du Tage, Espagne	≤ 3	Cunha et collab., 2015b
			Estuaire du Pô, Italie	≤ 3	
Oursin antarctique (Sterechinus neumayeri)			Baie Erebus, Antarctique	8,6	Emnet et collab., 2015
Squilla		Muscles	Rivière des Perles, Chine	1,52	Peng et collab., 2015

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Benzophénone-3 (BP-3)									
Ablette (<i>Alburnus alburnus</i>)			Eleuve lúcar Espagne	< 4	Gago-Ferrero, Díaz-Cruz					
Achigan à grande bouche (<i>Micropterus salmoides</i>)			Tieuve ouear, Espagne		et collab., 2015					
Anchois			Rivière des Perles, Chine	≤ 0,08	Peng et collab., 2015					
Anguille d'Europe		Muscles	Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015					
(Anguilla anguilla)	(Anguilla anguilla)		Fleuve Rhin, Suisse	≤ 6	Fent, Zenker et collab., 2010					
Bar rayé (<i>Morone saxatilis</i>)	Poissons		Muscles	Chungli, Taïwan	5,7	Tsai et collab., 2014				
Barbeau commun				≤ 36	Zenker et collab., 2008					
(Barbus barbus)			Rivière Glatt, Suisse	≤ 6	Fent, Zenker et collab., 2010					
Barbus guiraonis			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	5,0 – 98,7	Cunha et collab., 2018					
Bocasson émeraude (<i>Trematomus bernacchii</i>)			Baie Erebus, Antarctique	≤ 6,6 – 14,1	Emnet et collab., 2015					
Bramidae			Rivière des Perles, Chine	≤ 0,08	Peng et collab., 2015					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Benzophénone-3 (BP-3)									
			Fleuve Guadalquivir, Espagne	11,2	Gago-Ferrero, Díaz-Cruz et collab., 2013					
Carpe commune			Fleuve Llobregat, Espagne	≤ 4						
(Cyprinus carpio)			Fleuve Èbre, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015					
			Fleuve Guadalquivir, Espagne	11,2						
			Rivière Glatt, Suisse	≤ 36	Zenker et collab., 2008					
Chevesne (<i>Leuciscus cephalus</i>)			Lac de Greifen, Suisse	≤ 6	Fent, Zenker et collab., 2010					
		Muscles	Rivière Glatt, Suisse	≤ 6						
Collichthys			Rivière des Perles, Chine	0,797	Peng et collab., 2015					
	_ .		Lac de Pfäffikon, Suisse	≤ 120	Balmer et collab., 2005					
Corégone lavaret (<i>Coregonus</i> sp.)	Poissons		Lac de Thoune, Suisse	≤ 46						
			Lac Mjøsa, Norvège	≤ 20 – 182	Langford et collab., 2015					
Crapet-soleil (<i>Lepomis gibbosus</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Croassement rougeolaire (Larimichthys polyactis)			Mer de Chine orientale	≤ 10	Han et collab., 2016					
Flet			Rivière des Perles, Chine	≤ 0,08	Peng et collab., 2015					
Flet commun (Platichthys flesus)			Escaut occidental, Pays-Bas	≤ 3	Cunha et collab., 2015b					
Gardon			Lac de Zurich, Suisse	92 – 112						
(Rutilus rutilus)			Lac de Greifen, Suisse	89 – 118						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Benzophénone-3 (BP-3)									
Gardon (Rutilus rutilus)			Lac Hüttnersee, Suisse	66	Balmer et collab., 2005				
Gobie			Rivière des Perles, Chine	0,276	Peng et collab., 2015				
Goujon ibérique (<i>Gobio lozanoi</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Grand brochet (<i>Esox lucius</i>)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Haricot à grosse tête (<i>Trichiurus lepturus</i>)			Mer de Chine orientale	≤ 10	Han et collab., 2016				
Lotte (<i>Lota lota</i>)			Lac Mjøsa, Norvège	≤ 5	Langford et collab., 2015				
l uciobarbus araelleii	Poissons	Muscles	Fleuve Llobregat, Espagne	< 1	Gago-Ferrero, Díaz-Cruz				
Luciobarbus graensn			Fleuve Èbre, Espagne		et collab., 2015				
luciobarbuc solatori			Elouvo Quadalquivir Eanagna	≤ 1,2 – 24,3	Gago-Ferrero, Díaz-Cruz et collab., 2013				
Luciobarbus scialeri			Fieuve Guadaiquivii, Espagne	≤ 4 – 24,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Maquereau commun			Océans Atlantique et Pacifique	≤ 0,5 – 82,2	Cunha et collab., 2018				
(Scomber scombrus)			Galice, Espagne	≤ 28	Negreira et collab., 2013				
Morue			Chungli, Taïwan	3,3	Tsai et collab., 2014				
Morue de l'Atlantique (<i>Gadus morhua</i>)			Océans Atlantique et Pacifique	≤ 0,5	Cunha et collab., 2018				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence						
	Benzophénone-3 (BP-3)										
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤ 3	Cunha et collab., 2015b						
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	3,5 – 15,4	Molins-Delgado, Muñoz et collab., 2018						
Nase ibérique (Pseudochondrostoma polylepis)			Fleuve Júcar, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015						
Omble chevalier			Ellasjøen, Norvège	~ F	Lucia et callab 2016						
(Salvelinus alpinus)			Erlingvatnet, Spitsbergen, Norvège	- <u>></u> 0	Lucia et collad., 2016						
Ostéomugil		Muscles	Rivière des Perles, Chine	≤ 0,08	Peng et collab., 2015						
Perche commune			Lac Mjøsa, Norvège	≤ 5 –v6,5	Langford et collab., 2015						
(Perca fluviatilis)	Poissons		Lac Hüttnersee, Suisse	123	Balmer et collab., 2005						
Plie et sole			Océans Atlantique et Pacifique	≤ 0,5	Cunha et collab., 2018						
Poisson-flèche			Divière des Darles, China	1,068	Pope of collabe 2015						
Poissons-manches			Rivièle des Felles, Ghille	0,408	Feng et collab., 2015						
Saumon			Chungli, Taïwan	6,9	Tsai et collab., 2014						
Silure glane (<i>Silurus glani</i> s)			Fleuve Èbre, Espagne	≤ 4	Gago-Ferrero, Díaz-Cruz et collab., 2015						
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 0,5 – 2,5	Cunha et collab., 2018						
Tilapia			Chungli, Taïwan	5,4	Tsai et collab., 2014						
Trichiurus			Rivière des Perles, Chine	0,106	Peng et collab., 2015						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Benzo	phénone-3 (BP-3)		
			Rivière Marbach, Suisse	≤ 6 – 91	
			Rivière Birs, Suisse	≤ 6	Fent, Zenker et collab.,
		Muscles	Rivière Ergolz, Suisse	≤ 6 – 151	2010
(Saimo trutta)			Rivière Lutzelbourg, Suisse	≤ 6	
	Poissons		Fleuve Júcar, Espagne	4,6	Gago-Ferrero, Díaz-Cruz et collab., 2015
Bocasson émeraude (<i>Trematomus bernacchii</i>)		Foie	Baie Erebus, Antarctique	41	Emnet et collab., 2015
Morue de l'Atlantique (<i>Gadus morhua</i>)			Oslofjord, Norvège	≤ 20 – 1 037	Langford et collab., 2015
Mulet lebranche			Baie de Guanabara, Brésil	7,55 – 74,4	Molins-Delgado, Muñoz
(Mugil liza)		Branchies	Dale de Gualiabara, Dresir	3,07 – 24	et collab., 2018
Cormoran (<i>Phalacrocorax</i> sp.)		Muscles	Fleuve Rhin, Suisse	≤ 50	Fent, Zenker et collab., 2010
Busard des roseaux (Circus aeruginosus)				46,7	Molins-Delgado, Manez et collab., 2017
Canard chipeau (<i>Anas strepera</i>)	Oiseaux	(Truta	Dere actional de Deñana - Fanaras	16,9 – 31,5	
Cigogne blanche (<i>Ciconia ciconia</i>)		Ceuis	Paro national de Donana, Espagne	19,5 – 29,2	Molins-Delgado, Manez et collab., 2017
Faucon crécerelle (<i>Falco tinnunculus</i>)				18,3 – 35,2	

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Benzophénone-3 (BP-3)									
Goéland railleur (Chroicocephalus genei)				22,5						
Mouette rieuse (Chroicocephalus ridibundus)	Oiseaux	Œufs	Parc national de Doñana, Espagne	24,7 – 44,4	Molins-Delgado, Manez et collab., 2017					
Sterne hansel (<i>Gelochelidon nilotica</i>)				18,2 – 49,3						
	Benzophénone-4 (BP-4)									
Gammare (<i>Gammarus</i> sp.)			Rivière Marbach, Suisse	≤ 50	Fent, Zenker et collab., 2010					
Moule zébrée	Invertébrés	Organisme entier	Lac de Greifen, Suisse							
(Dreissena polymorpha)			Rivière Glatt, Suisse							
Anguille d'Europe (<i>Anguilla anguilla</i>)			Fleuve Rhin, Suisse	< 50	Fent, Zenker et collab., 2010					
Barbeau commun (<i>Barbus barbus</i>)			Rivière Glatt, Suisse	30						
			Rivière Glatt, Suisse	≤ 1,83	Zenker et collab., 2008					
Chevesne	Poissons	Muscles	Rivière Glatt, Suisse	≤ 1,83	Zenker et collab., 2008					
(Leuciscus cephalus)			Lac de Greifen, Suisse							
			Rivière Glatt, Suisse	< 50	Fent, Zenker et collab.,					
Truite commune			Rivière Birs, Suisse	<i>=</i> 50	2010					
(Salmo trutta)			Rivière Ergolz, Suisse							

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Benzop	phénone-4 (BP-4)		
Truite commune	Poissons	Muscles	Rivière Lutzelbourg, Suisse	< 50	Fent, Zenker et collab.,
(Salmo trutta)		WUSCIES	Rivière Marbach, Suisse	U	2010
Cormoran (<i>Phalacrocorax</i> sp.)	Oiseaux	Muscles	Fleuve Rhin, Suisse	≤ 50	Fent, Zenker et collab., 2010
		Benzor	ohénone-8 (BP-8)		
Chamelea gallina		Organisme entier	Delta de l'Èbre, Espagne	≤ 20	Cunha et collab., 2015b
Crabe		Chair	Océans Atlantique et Pacifique	≤ 7	Cunha et collab., 2018
Moules méditerranéennes et		Organisme entier	Delta de l'Èbre, Espagne	≤ 6	Cunha et collab., 2015b
communes	Inventebres		Estuaire du Tage, Espagne		
(Mythus ganoprovincians et M. eduns)			Estuaire du Pô, Italie		
<i>Mytilu</i> s sp.			Océans Atlantique et Pacifique	≤ 7	Cunha et collab., 2018
Bar rayé (<i>Morone saxatilis</i>)			Chungli, Taïwan	1,7	Tsai et collab., 2014
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	≤ 7 – 90,7	Cunha et collab., 2018
Flet commun (<i>Platichthys flesus</i>)	Poissons	Muscles	Escaut occidental, Pays-Bas	≤ 6	Cunha et collab., 2015b
Maquereau (Scomber scombrus)			Océans Atlantique et Pacifique	≤7	Cunha et collab., 2018
Morue			Chungli, Taïwan	0,5	Tsai et collab., 2014

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Benzophénone-8 (BP-8)									
Morue de l'Atlantique (Gadus morhua)			Océans Atlantique et Pacifique	≤7	Cunha et collab., 2018				
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤ 6	Cunha et collab., 2015b				
Plie et sole	Poissons	Muscles	Océans Atlantique et Pacifique	≤7	Cunha et collab., 2018				
Saumon			Chungli, Taïwan	2,4	Tsai et collab., 2014				
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤7	Cunha et collab., 2018				
Tilapia			Chungli, Taïwan	1,5	Tsai et collab., 2014				
	·	Benzop	hénone-12 (BP-12)						
Squilla	Invertbrés	Muscles	Rivière des Perles, Chine	≤ 10	Peng et collab., 2015				
Anchois									
Bramidae									
Collichthys									
Flet									
Gobie	Poissons	Muscles	Rivière des Perles, Chine	≤ 10	Peng et collab., 2015				
Ostéomugil									
Poisson-flèche									
Poissons-manches									
Trichiurus									

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	4-hydroxybenzophénone (4HBP)									
Méduse	Invortébréo	Organismo ontior	Lac Jellyfish, Palaos	0,58 – 15,44	Roll at collab 2017					
(Mastigias papua)	Inventebres	Organisme entier	Lac Ngermeuangel, Palaos	0,83 – 3,54						
Ablette (Alburnus alburnus)										
Achigan à grande bouche (<i>Micropterus salmoides</i>)			Fleuve Júcar, Espagne		Gago-Ferrero, Díaz-Cruz et collab., 2015					
Anguille d'Europe (<i>Anguilla anguilla</i>)										
Barbus guiraonis										
			Fleuve Guadalquivir, Espagne							
Carpe commune (<i>Cyprinus carpio</i>)			Fleuve Llobregat, Espagne							
	Poissons	Muscles	Fleuve Èbre, Espagne	≤ 6						
Crapet-soleil (<i>Lepomis gibbosus</i>)										
Grand brochet (<i>Esox lucius</i>)			Fleuve Júcar, Espagne							
Goujon ibérique (<i>Gobio Iozanoi</i>)										
luciobarhus graellsii			Fleuve Llobregat, Espagne							
			Fleuve Èbre, Espagne							
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne							

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	4-hydroxybenzophénone (4HBP)									
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	3,02 – 22,6	Molins-Delgado, Muñoz et collab., 2018					
Nase ibérique (Pseudochondrostoma polylepis)		Mussles	Fleuve Júcar, Espagne							
Silure glane (<i>Silurus glani</i> s)	Poissons	Muscles	Fleuve Èbre, Espagne	≤ 6	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Truite commune (<i>Salmo trutta</i>)			Fleuve Júcar, Espagne							
Mulet lebranche		Foie	Baie de Guanabara, Brésil	5,47 – 139	Molins-Delgado, Muñoz					
(Mugil liza)		Branchies		5,28 – 31,6	et collab., 2018					
Busard des roseaux (Circus aeruginosus)				895						
Canard chipeau (<i>Anas strepera</i>)				13,5 – 560						
Cigogne blanche (<i>Ciconia ciconia</i>)				104 – 3 348						
Faucon crécerelle (Falco tinnunculus)	Oiseaux	Œufs	Parc national de Doñana, Espagne	20 – 1 200	Molins-Delgado, Manez et collab., 2017					
Goéland railleur (Chroicocephalus genei)				266						
Mouette rieuse (Chroicocephalus ridibundus)				72,8 –v111						
Sterne hansel (Gelochelidon nilotica)				12 – 472						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
2,3,4-trihydroxybenzophénone (THB)									
Moules méditerranéennes et			Delta de l'Èbre, Espagne						
communes (<i>Mytilus galloprovincialis</i> et <i>M. edulis</i>)	Invertébrés	Organisme entier	Estuaire du Tage, Espagne						
Flet commun				≤ 30	Cunha, Fernandes et collab., 2015				
	Poissons	Muscles	Escaut occidental, Pays-Bas						
Mulet doré (<i>Liza aurata</i>)			Estuaire du Pô, Italie						
	4,4'-Dihydroxybenzophénone (4DHB)								
Méduse	Invortábráo	Organisme entier	Lac Jellyfish, Palaos	≤ ld – 3,78	Bell et collab 2017				
(Mastigias papua)	invertebres	Organisme entier	Lac Ngermeuangel, Palaos	≤ ld – 4,71					
Ablette (Alburnus alburnus)					Gago-Ferrero, Díaz-Cruz et collab., 2015				
Achigan à grande bouche (<i>Micropterus salmoides</i>)			Fleuve Júcar, Espagne	≤ 5					
Anguille d'Europe (<i>Anguilla anguilla</i>)	Poissons	Muscles							
Barbus guiraonis									
			Fleuve Guadalquivir, Espagne						
Carpe commune (<i>Cyprinus carpio</i>)			Fleuve Llobregat, Espagne		Gago-Ferrero, Díaz-Cruz et collab., 2015, 2013				
			Fleuve Èbre, Espagne		51 55105., 2010, 2010				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
4,4'-Dihydroxybenzophénone (4DHB)									
Crapet-soleil (<i>Lepomis gibbosus</i>)			Fleuve Júcar, Espagne	≤ 5	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Goujon ibérique (<i>Gobio lozanoi</i>)									
Grand brochet (<i>Esox lucius</i>)	Poissons	Muscles							
			Fleuve Llobregat, Espagne						
Luciobarbus graensn			Fleuve Èbre, Espagne	_					
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne						
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	4,35 – 17,4	Molins-Delgado, Muñoz et collab., 2018				
Nase ibérique (Pseudochondrostoma polylepis)			Musslas	Fleuve Júcar, Espagne					
Silure glane (<i>Silurus glani</i> s)	Poissons	Muscles	Fleuve Èbre, Espagne	≤ 5	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Truite commune (<i>Salmo trutta</i>)			Fleuve Júcar, Espagne						
Mulet lebranche		Foie	Paio de Guanabara, Précil	5,8 – 451	Molins-Delgado, Muñoz				
(Mugil liza)		Branchies	- Dale de Gualiabala, Diesil	3,29 – 23,5	et collab., 2018				
Busard des roseaux (<i>Circus aeruginosus</i>)	Oiseaux	Œufs	Parc national de Doñana, Espagne	1051	Molins-Delgado, Manez				
Canard chipeau (<i>Anas strepera</i>)	Cideaux		i are national de Donana, Espagne	_ 0,01	et collab., 2017				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
4,4'-Dihydroxybenzophénone (4DHB)									
Cigogne blanche (<i>Ciconia ciconia</i>)				≤ 0,51 – 29					
Faucon crécerelle (<i>Falco tinnunculus</i>)				≤ 0,51 – 132					
Goéland railleur (Chroicocephalus genei)	Oiseaux	Œufs	Parc national de Doñana, Espagne	≤ 0,51	Molins-Delgado, Manez et collab., 2017				
Mouette rieuse (Chroicocephalus ridibundus)				≤ 0,51					
Sterne hansel (Gelochelidon nilotica)				≤ 0,51					
	D	iéthylamino hydroxy	benzoyl hexyl benzoate (DHHB)	•					
Chamelea gallina		Organisme entier							
Moules méditerranéennes et	Invertébrés		rtébrés Organisme entier	Delta de l'Ebre, Espagne	≤ 30	Cunha et collab., 2015b			
communes (Mytilus galloprovincialis et M. edulis)			Estuaire du Tage, Espagne						
			Estuaire du Pô, Italie						
Flet commun (Platichthys flesus)	Deissons	Musslos	Escaut occidental, Pays-Bas	< 30	Cupho at collab 2015b				
Mulet doré (<i>Liza aurata</i>)	FUISSOIIS	Muscles	Estuaire du Tage, Espagne	<u> </u>	Cullina et collab., 2013b				
		Ethyl F	PABA (Et-PABA)						
Méduse	Invertébrée	Organismo option	Lac Jellyfish, Palaos	0,68 – 3,24	Bell et collab 2017				
(Mastigias papua)			Lac Ngermeuangel, Palaos	0,67 – 4,05					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Octyl diméthyl PABA (OD-PABA)									
Bulot (<i>Buccinum undatum</i>)		Organisme entier	Rivière des Perles, Chine	0,2	Peng et collab., 2015				
Chamelea gallina			Delta de l'Èbre, Espagne	≤ 2	Cunha et collab., 2015b				
Crabe		Chair	Océans Atlantique et Pacifique	≤ 2	Cunha et collab., 2018				
Crabe enragé (<i>Carcinus maenas</i>)			Oslofjord, Norvège	≤ 20	Langford et collab., 2015				
Crevette nordique du Canada (<i>Pandalus boreali</i> s)		Organisme entier							
Coque commune (Cerastoderma edule)			Galice, Espagne	≤ 12	Negreira et collab., 2013				
	Invertébrés	Tissus mous	Waikiki, Oahu, Hawaii, États-Unis	≤ 0,3	Mitchelmore et collab., 2019				
Corail			Ka'a'awa, Oahu, Hawaii, États-Unis						
			Kaneohe Bay, Oahu, Hawaii, États-Unis						
Moule commune (<i>Mytilus edulis</i>)			Océan Atlantique, France	≤ 2	Bachelot et collab., 2012				
		Organisme entier	Océan Atlantique, Portugal	≤ 10 – 833	Picot Groz et collab., 2014				
Moule méditerranéenne		Organisme entier	Galice, Espagne	≤ 12	Negreira et collab., 2013				
(wymus ganoprovincialis)			Côté méditerranéenne, Portugal	≤ 2,5 – 833	Groz et collab., 2014				
			Mer méditerranée, France	≤ 2	Bachelot et collab., 2012				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Octyl diméthyl PABA (OD-PABA)									
			Delta de l'Èbre, Espagne							
Moules méditerranéennes et			Estuaire du Tage, Espagne							
communes (Mytilus galloprovincialis et M. edulis)		Organisme entier	Estuaire du Pô, Italie	≤2	Cunha et collab., 2015b					
	Invertébrés		Océans Atlantique et Pacifique							
<i>Mytilu</i> s sp.										
Squilla		Muscles	Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015					
Ablette (<i>Alburnus alburnus</i>)	Deisser	Muscles	Fleuve lúcar Espagne	≤ 0 1	Gago-Ferrero, Díaz-Cruz					
Achigan à grande bouche (<i>Micropterus salmoides</i>)	1 01330113		rieuve Jucal, Espagne	- 0,1	et collab., 2015					
Anchois			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015					
Anguille d'Europe (<i>Anguilla anguilla</i>)			Fleuve Júcar, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Barbus guiraonis										
Baudroie (<i>Lophius</i> sp.)	Poissons	Muscles	Océans Atlantique et Pacifique	≤ 2	Cunha et collab., 2018					
Bramidae			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015					
			Fleuve Guadalquivir, Espagne							
Carpe commune (<i>Cyprinus carpio</i>)			Fleuve Llobregat, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015, 2013					
			Fleuve Èbre, Espagne							

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Octyl diméthyl PABA (OD-PABA)									
Collichthys			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015				
Corégone lavaret (Coregonus lavaretus)			Lac Mjøsa, Norvège	≤ 20	Langford et collab., 2015				
Crapet-soleil (<i>Lepomis gibbosus</i>)			Fleuve Júcar, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Flet commun (Platichthys flesus)			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015				
Flet commun (Platichthys flesus)			Escaut occidental, Pays-Bas	≤2	Cunha et collab., 2015b				
Gobie			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015				
Goujon ibérique (<i>Gobio lozanoi</i>)	Poissons	Muscles	Eleuve lúcar Espagne	< 0.1	Gago-Ferrero, Díaz-Cruz				
Grand brochet (<i>Esox lucius</i>)				_ 0,1	et collab., 2015				
Lotte (<i>Lota lota</i>)			Lac Mjøsa, Norvège	≤ 20	Langford et collab., 2015				
luciobarbus graelleii			Fleuve Llobregat, Espagne						
Luciobarbus graensn			Fleuve Èbre, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne						
Ostéomugil			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015				
Maquereau commun			Galice, Espagne	≤ 12	Negreira et collab., 2013				
(Scomber scombrus)			Océans Atlantique et Pacifique	≤ 2	Cunha et collab., 2018				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Octyl diméthyl PABA (OD-PABA)									
Morue de l'Atlantique (<i>Gadus morhua</i>)			Océans Atlantique et Pacifique	≤2	Cunha et collab., 2018				
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	≤ 1,77	Molins-Delgado, Muñoz et collab., 2018				
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤2	Cunha et collab., 2015b				
Nase ibérique (Pseudochondrostoma polylepis)			Fleuve Júcar, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Omble chevalier			Ellasjøen, Norvège	≤ 6	Lucia et collab., 2016				
(Salvelinus alpinus)			Erlingvatnet, Spitsbergen, Norvège	≤ 5					
Perche commune (<i>Perca fluviatilis</i>)	Poissons	Muscles	Lac Mjøsa, Norvège	≤ 20	Langford et collab., 2015				
Plie et sole			Océans Atlantique et Pacifique	≤ 2	Cunha et collab., 2018				
Poisson-flèche			Divière des Darles, China	< 0.005	Dang at applich 2015				
Poissons-manches			Riviere des Feries, Chine	≤ 0,005	Feng et collab., 2015				
Silure glane (<i>Silurus glanis</i>)			Fleuve Èbre, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤2	Cunha et collab., 2018				
Trichiurus			Rivière des Perles, Chine	≤ 0,005	Peng et collab., 2015				
Truite commune (Salmo trutta)			Fleuve Júcar, Espagne	≤ 0,1	Gago-Ferrero, Díaz-Cruz et collab., 2015				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Octyl diméthyl PABA (OD-PABA)									
Morue de l'Atlantique (<i>Gadus morhua</i>)		Foie	Oslofjord, Norvège	≤ 20 – 21,3	Langford et collab., 2015				
Mulet lebranche	Poissons		Baie de Guanabara, Brésil	≤ 1,77	Molins-Delgado, Muñoz				
(Mugii liza)		Branchies			et collab., 2018				
Busard des roseaux (Circus aeruginosus)									
Canard chipeau (<i>Anas strepera</i>)									
Cigogne blanche (<i>Ciconia ciconia</i>)									
Faucon crécerelle (<i>Falco tinnunculus</i>)			Parc national de Doñana, Espagne	≤ 0,13	Molins-Delgado, Manez et collab., 2017				
Goéland railleur (Chroicocephalus genei)	Oiseaux	Œufs							
Mouette rieuse (Chroicocephalus ridibundus)									
Sterne hansel (Gelochelidon nilotica)									
Goéland bourgmestre (Larus hyperboreus)			Kapp Guissez, Norvège	≤ 5					
Mouette tridactule ou des brumes			Krykkjefjellet, Norvège	≤ 10	Lucia et collab., 2016				
mouelle indaciyie ou des bruilles			Observasjonsholmen, Norvège	≤ 5					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Octyl dimét	hyl PABA (OD-PABA)		
		Graisse de la mère		≤ 1,5 – 3,15	
		Muscles de la mère		≤ 1,5	
Dauphin de la Plata		Placenta		1 385	
(Franciscana dolphin)		Graisse du fœtus		2,5 – 67,5	
		Muscles du fœtus		≤ 1,5 – 155	
	Mammifères	Graisse du veau	Brésil	≤ 1,5	Alonso et collab., 2015
		Muscles du veau		36,5	
	-	Graisse de la mère		≤ 1,5 – 34	
Dauphin de Guyane (<i>Guiana dolphin</i>)		Muscles de la mère		≤ 1,5 – 1 050	
		Graisse du fœtus		≤ 1,5	
		Muscles du fœtus		17 – 26	
		3-(4-méthylbenz	ylidène) camphor (4-MBC)		
Bulot (<i>Buccinum undatum</i>)		Organisme entier	Rivière des Perles, Chine	0,2	Peng et collab., 2015
Crabe	- Invertébrée	Chair	Océans Atlantique et Pacifique	5	Cunha et collab., 2018
Chamelea gallina	Invertebres		Delta de l'Èbre, Espagne	≤ 2	Cunha et collab., 2015b
Coque commune (<i>Cerastoderma edule</i>)		Organisme entier	Galice, Espagne	≤ 12	Negreira et collab., 2013

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	3-(4-méthylbenzylidène) camphor (4-MBC)									
			Waikiki, Oahu, Hawaii, États-Unis	≤ 3 – 75,7						
Corail		Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 3	Mitchelmore et collab., 2019					
			Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 3 – 102,1						
Écrevisse virile (Orconectes virilis)		Chair	Baltimore, Maryland, États-Unis	75,3 – 352	He et collab., 2017					
Gammare (<i>Gammarus</i> sp.)			Rivière Marbach, Suisse	≤ 50	Fent, Zenker et collab., 2010					
Huître américaine (<i>Crassostrea virginica</i>)			Baie de Chesapeake, Maryland, États-Unis	≤ 0,6	He et collab., 2017					
Laternula elliptica	Invertébrés		Baie Erebus, Antarctique	≤ 2	Emnet et collab., 2015					
Méduse			Lac Jellyfish, Palaos	≤ ld – 0,49	Bell et collab 2017					
(Mastigias papua)		Organisme entier	Lac Ngermeuangel, Palaos	≤ ld – 0,20						
Moule crochue (<i>Ischadium recurvum</i>)		Organisme entier	Baie de Chesapeake, Maryland, États-Unis	≤ 0,6	He et collab., 2017					
Moule méditerranéenne (<i>Mylitus galloprovincialis</i>)			Galice, Espagne	≤ 12	Negreira et collab., 2013					
Moule zébrée			Lac de Greifen, Suisse	< 50	Fent, Zenker et collab.,					
(Dreissena polymorpha)			Rivière Glatt, Suisse	2 00	2010					
<i>Mytilu</i> s sp.			Océans Atlantique et Pacifique	≤ 2 – 56,2	Cunha et collab., 2018					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence		
3-(4-méthylbenzylidène) camphor (4-MBC)							
			Viana do Castelo, Portugal	< 15			
			Leça da Palmeira, Portugal				
			Plage de Vagueira, Portugal	≤ 15 – 74,6	Castro et collab., 2018		
			Algés, Portugal	≤ 15 – 88,3			
Moules méditerranéennes et			Costa da Caparica, Portugal	≤ 15			
(Mytilus galloprovincialis et M. edulis)	Invertébrés	Organisme entier	Aljezur, Portugal	≤ 15	Castro et collab., 2018		
			Faro, Portugal	≤ 15	Castro et collab., 2018		
			Delta de l'Èbre, Espagne	≤2	Cunha et collab., 2015b		
			Estuaire du Tage, Espagne				
			Estuaire du Pô, Italie				
Oursin antarctique (Sterechinus neumayeri)			Baie Erebus, Antarctique	≤2	Emnet et collab., 2015		
			Carreço, Portugal	<i>L</i> 1			
Oursin violet (<i>Paracentrotus lividus</i>)		Gonades et œufs	Praia do Norte, Portugal		Rocha et collab., 2018		
			Vila Chã, Portugal	≤ 1 – 2,4			
Squilla		Muscles	Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015		
Ablette (<i>Alburnus alburnus</i>)	Poissons	Muscles	Eleuve lúcar Espagne	< 2 3	Gago-Ferrero, Díaz-Cruz		
Achigan à grande bouche (<i>Micropterus salmoides</i>)		IVIU3CIES	i ieuve Jucai, Lapagiie	22,0	et collab., 2015		

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
3-(4-méthylbenzylidène) camphor (4-MBC)									
Anchois			Rivière des Perles, Chine	2,3	Peng et collab., 2015				
Anguille d'Europe			Fleuve Rhin, Suisse	≤ 50	Fent, Zenker et collab., 2010				
(Anguilla anguilla)			Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Barbeau commun	Barbeau commun (<i>Barbus barbus</i>) Barbeau commun		Rivière Glatt, Suisse	≤ 50	Fent, Zenker et collab., 2010				
(Danus banus)				≤ 23	Zenker et collab., 2008				
Barbeau commun		Rivière Glatt, Suisse	≤ 50	Fent, Zenker et collab., 2010					
(Danus banus)	Poissons			≤ 23	Zenker et collab., 2008				
Barbus guiraonis		Macolog	Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	5 – 20,4	Cunha et collab., 2018				
Bocasson émeraude (<i>Trematomus bernacchii</i>)			Baie Erebus, Antarctique	≤2	Emnet et collab., 2015				
Bramidae			Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015				
			Fleuve Llobregat, Espagne	≤ 2,3					
Carpe commune			Fleuve Èbre, Espagne		Gago-Ferrero, Díaz-Cruz				
(Oyphinus carpio)			Fleuve Guadalquivir, Espagne		er collab., 2013, 2013				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
3-(4-méthylbenzylidène) camphor (4-MBC)									
Catostomus insignis			Rivière Gila, Nouveau-Mexique, États-Unis	≤ 120	Mottaleb et collab., 2009				
			Rivière Glatt, Suisse	< 50	Fent, Zenker et collab.,				
Chevesne (<i>Leuciscus cephalus</i>)			Lac de Greifen, Suisse	<u> </u>	2010				
			Rivière Glatt, Suisse	≤ 23	Zenker et collab., 2008				
Collichthys			Rivière des Perles, Chine	≤ 0,2	tang et collab., 2015				
Corégone lavaret		Muscles	Lac de Thoune, Suisse	≤ 56	Balmer et collab., 2005				
(Coregonus sp.)			Lac de Pfäffikon, Suisse	≤ 140					
Crapet arlequin (Lepomis macrochirus)			Pecan et Clear Creek, Denton, Texas, États-Unis	≤ 5,3	Mottaleb et collab., 2009				
Crapet-soleil (<i>Lepomis gibbosus</i>)	Poissons		Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Flet commun			Escaut occidental, Pays-Bas	≤2	Cunha et collab., 2015b				
(Platichthys flesus)			Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015				
			Lac de Zurich, Suisse	73 – 80					
Gardon (<i>Rutilus rutilus</i>)			Lac de Greifen, Suisse	60 – 94	Balmer et collab., 2005				
			Lac Hüttnersee, Suisse	44					
Gobie			Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015				
Goujon ibérique (<i>Gobio lozanoi</i>)			Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		3-(4-méthylben	zylidène) camphor (4-MBC)		
Grand brochet (<i>Esox lucius</i>)			Fleuve Júcar, Espagne	≤ 2,3	
Luciobarbus graelleii			Fleuve Llobregat, Espagne		Gago-Ferrero, Díaz-Cruz
Luciobarbus graensn			Fleuve Èbre, Espagne	≤ 2,3 – 2,7	et collab., 2015, 2015
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne	≤ 2,3	
Maquereau commun			Océans Atlantique et Pacifique	≤ 2 – 15,7	Cunha et collab., 2018
(Scomber scombrus)			Galice, Espagne	≤ 12	Negreira et collab., 2013
Morue de l'Atlantique (<i>Gadus morhua</i>)		Muscles	Océans Atlantique et Pacifique	5	Cunha et collab., 2018
Mulet doré (<i>Liza aurat</i> a)	Poissons		Estuaire du Tage, Espagne	≤2	Cunha et collab., 2015b
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	5,2 – 23,4	Molins-Delgado, Muñoz et collab., 2018
Nase ibérique (<i>Pseudochondrostoma polylepis</i>)			Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015
Ostéomugil			Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015
Perche (<i>Perca fluviatilis</i>)			Lac Hüttnersee, Suisse	166	Balmer et collab., 2005
Plie et sole			Océans Atlantique et Pacifique	5	Cunha et collab., 2018
Poisson-flèche			Pivièro dos Porlos, China	< 0.2	Pong at collab 2015
Poissons-manches			Riviere des Feries, Grille	≤ 0,2	r eng et collab., 2015

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
3-(4-méthylbenzylidène) camphor (4-MBC)									
Silure glane (Silurus glanis)			Fleuve Èbre, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 2 – 5	Cunha et collab., 2018				
Trichiurus			Rivière des Perles, Chine	≤ 0,2	Peng et collab., 2015				
			Rivière Lutzelmurg, Suisse	140 – 280					
		Muscles	Rivière Glatt, Suisse	65 – 590	Buser et collab., 2006				
	Poissons		Rivière Frenke, Suisse	50 – 350					
			Rivière Langete, Suisse	770 – 1 800					
			Rivière Sissle, Suisse	930					
			Rivière Surb, Suisse	160 – 200					
(Salmo trutta)			Rivière Winkelbach, Suisse	260 – 1 100					
			Fleuve Júcar, Espagne	≤ 2,3	Gago-Ferrero, Díaz-Cruz et collab., 2015				
			Rivière Birs, Suisse						
			Rivière Ergolz, Suisse	< 50	Fent, Zenker et collab.,				
			Rivière Lutzelbourg, Suisse	- ≤ 50	2010				
			Rivière Marbach, Suisse						
Mulet lebranche (<i>Mugil liza</i>)		Foie	Baie de Guanabara, Brésil	4,6 – 13,7	Molins-Delgado, Muñoz et collab., 2018				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
3-(4-méthylbenzylidène) camphor (4-MBC)										
Bocasson émeraude (Trematomus bernacchii)		Foie	Baie Erebus, Antarctique	≤2	Emnet et collab., 2015					
Mulet lebranche (<i>Mugil liza</i>)	FUISSOIIS	Branchies	Baie de Guanabara, Brésil	4,42 – 14,5	Molins-Delgado, Muñoz et collab., 2018					
Cormoran (<i>Phalacrocorax</i> sp.)	Oiseaux	Muscles	Fleuve Rhin, Suisse	≤ 50	Fent, Zenker et collab., 2010					
		Graisse de la mère		≤ 1,5 – 47,5						
		Muscles de la mère		≤ 1,5 – 855						
Dauphin de la Plata		Placenta		≤ 1,5						
(Franciscana dolphin)		Graisse du fœtus		≤ 1,5 – 97						
		Muscles du fœtus		≤ 1,5 – 170						
	Mammifères	Graisse du veau	Brésil	≤ 1,5	Alonso et collab., 2015					
		Muscles du veau		250						
		Graisse de la mère		≤ 1,5 – 48						
Dauphin de Guyane (<i>Guiana dolphin</i>)		Muscles de la mère		230 – 570						
		Graisse du fœtus		≤ 1,5 – 334						
		Muscles du fœtus		60 - 80						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl salicylate (EHS)									
Chamelea gallina			Delta de l'Èbre, Espagne	≤2	Cunha et collab., 2015b					
Coque commune (Cerastoderma edule)		Organisme entier	Galice, Espagne	≤ 18	Negreira et collab., 2013					
Crabe		Chair	Océans Atlantique et Pacifique	≤2	Cunha et collab., 2018					
			Waikiki, Oahu, Hawaii, États-Unis	60,6 – 551,5						
Corail		Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	24,2 – 770,3	Mitchelmore et collab., 2019					
			Kaneohe Bay, Oahu, Hawaii, États-Unis	220,1 – 565,8						
Moule méditerranéenne (<i>Mylitus galloprovincialis</i>)		brés	Galice, Espagne	≤ 18	Negreira et collab., 2013					
			Viana do Castelo, Portugal	≤ 10 – 25,4	Castro et collab., 2018					
	Invertébrés		Leça da Palmeira, Portugal	≤ 10 – 52						
			Plage de Vagueira, Portugal	≤ 10 – 38,9						
			Algés, Portugal	≤ 10 – 30,3						
Moules méditerranéennes et		Organisme entier	Costa da Caparica, Portugal	≤ 10 – 59,2						
(Mytilus galloprovincialis et M. edulis)			Aljezur, Portugal	≤ 10 – 11,6						
			Faro, Portugal	≤ 10 – 13,5						
			Delta de l'Èbre, Espagne							
			Estuaire du Tage, Espagne	≤2	Cunha et collab., 2015b					
			Estuaire du Pô, Italie							
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 2 – 72,1	Cunha et collab., 2018					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl salicylate (EHS)									
Bar rayé (<i>Morone saxatilis</i>)			Chungli, Taïwan	2,9	Tsai et collab., 2014					
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	≤ 2 – 15,3	Cunha et collab., 2018					
Flet commun (<i>Platichthys flesus</i>)			Escaut occidental, Pays-Bas	≤2	Cunha et collab., 2015b					
Maquereau commun		Muscles	Océans Atlantique et Pacifique	≤ 2 – 49,1	Cunha et collab., 2018					
(Scomber scombrus)			Galice, Espagne	≤ 18	Negreira et collab., 2013					
Morue	Deiecono		Chungli, Taïwan	0,8	Tsai et collab., 2014					
Morue de l'Atlantique (<i>Gadus morhua</i>)	- F 01350115		Océans Atlantique et Pacifique	≤ 2 – 26,7	Cunha et collab., 2018					
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤2	Cunha et collab., 2015b					
Plie et sole	—		Océans Atlantique et Pacifique	≤2	Cunha et collab., 2018					
Saumon	_		Chungli, Taïwan	3,9	Tsai et collab., 2014					
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤2-5	Cunha et collab., 2018					
Tilapia			Chungli, Taïwan	1,8	Tsai et collab., 2014					
		Hor	nosalate (HS)							
Chamelea gallina	Invortábrác	Organisme entier	Delta de l'Èbre, Espagne	≤ 6	Cunha et collab., 2015b					
Crabe	Inventebres	Chair	Océans Atlantique et Pacifique	≤ 2	Cunha et collab., 2018					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Homosalate (HS)									
Coque commune (Cerastoderma edule)		Organisme entier	Galice, Espagne	≤ 28	Negreira et collab., 2013				
			Waikiki, Oahu, Hawaii, États-Unis	145,6 – 611,2					
Corail		Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	24,2 – 577,3	Mitchelmore et collab., 2019				
			Kaneohe Bay, Oahu, Hawaii, États-Unis	24,2 – 483,3					
Écrevisse virile (Orconectes virilis)		Chair	Baltimore, Maryland, États-Unis	77,6 – 399	He et collab., 2017				
Huître américaine			Baie de Chesapeake, Maryland, États-Unis	≤ 4,5 – 158,3	He et collab., 2019a				
(Crassostrea virginica)	Invertébrés			56,1 – 143	He et collab., 2017				
Moule crochue				138,6 ± 12,6	He et collab., 2019a				
(Ischadium recurvum)				107 ± 4	He et collab., 2017				
Moule méditerranéenne (<i>Mylitus galloprovincialis</i>)		Organisme entier	Galice, Espagne	≤ 28	Negreira et collab., 2013				
Moules méditerranéennes et			Estuaire du Tage, Espagne						
communes (<i>Mytilus galloprovincialis</i> et <i>M. edulis</i>)			Estuaire du Pô, Italie	≤ 6	Cunha et collab., 2015b				
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 2 – 19,1	Cunha et collab., 2018				
Bar rayé (<i>Morone saxatilis</i>)	Poiscono	Museles	Chungli, Taïwan	≤ 0,02	Tsai et collab., 2014				
Baudroie (<i>Lophius</i> sp.)	FUISSUIIS	Muscles	Océans Atlantique et Pacifique	≤ 2 – 54	Cunha et collab., 2018				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence			
Homosalate (HS)								
Flet commun (Platichthys flesus)			Escaut occidental, Pays-Bas	≤ 6	Cunha et collab., 2015b			
Maquereau commun			Océans Atlantique et Pacifique	≤ 2 − 6,4	Cunha et collab., 2018			
(Scomber scombrus)			Galice, Espagne	≤ 28	Negreira et collab., 2013			
Morue			Chungli, Taïwan	≤ 0,02	Tsai et collab., 2014			
Morue de l'Atlantique (<i>Gadus morhua</i>)	Paissons	Museles	Océans Atlantique et Pacifique	≤ 2 – 2,5	Cunha et collab., 2018			
Mulet doré (<i>Liza aurata</i>)	- FUISSUIIS	Estuaire du Tage, Espagne Océans Atlantique et Pacifique	Estuaire du Tage, Espagne	≤ 6	Cunha et collab., 2015b			
Plie et sole			≤ 2	Cunha et collab., 2018				
Saumon			Chungli, Taïwan	0,7	Tsai et collab., 2014			
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 2 – 58,5	Cunha et collab., 2018			
Tilapia			Chungli, Taïwan	≤ 0,02	Tsai et collab., 2014			
		Trolamin	e salicylate (TEAS)					
			Waikiki, Oahu, Hawaii, États-Unis					
Corail	Invertébrés	Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 0,6	Mitchelmore et collab., 2019			
			Kaneohe Bay, Oahu, Hawaii, États-Unis					
		Isoamyl 4-m	éthoxycinnamate (IMC)					
Chamelea gallina	Invertébrés	Organisme entier	Delta de l'Èbre, Espagne	≤ 6	Cunha et collab., 2015b			
Crabe	111061(60163	Chair	Océans Atlantique et Pacifique	≤ 1	Cunha et collab., 2018			

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence			
Isoamyl 4-méthoxycinnamate (IMC)								
Coque commune (Cerastoderma edule)			Colico Espagno	F 10	Negreira et collab., 2013			
Moule méditerranéenne (<i>Mylitus galloprovincialis</i>)			Galice, Espagne	5 10				
			Viana do Castelo, Portugal	< 15				
			Leça da Palmeira, Portugal	<u> </u>				
			Plage de Vagueira, Portugal	≤ 15 – 40,3				
	Invertébrés	Organisme entier	Algés, Portugal	≤ 15 – 43,1 ≤ 15	Castro et collab., 2018 Cunha et collab., 2015b			
Moules méditerranéennes et			Costa da Caparica, Portugal					
(Mytilus galloprovincialis et M. edulis)			Aljezur, Portugal					
			Faro, Portugal					
			Delta de l'Èbre, Espagne					
			Estuaire du Tage, Espagne	≤ 6				
			Estuaire du Pô, Italie					
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 1 – 37,3	Cunha et collab., 2018			
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	≤ 1 – 5	Cunha et collab., 2018			
Flet commun (<i>Platichthys flesus</i>)	Poissons	Muscles	Escaut occidental, Pays-Bas	≤ 6	Cunha et collab., 2015b			
Maquereau commun			Océans Atlantique et Pacifique	≤ 1 – 55,5	Cunha et collab., 2018			
(Scomber scombrus)			Galice, Espagne	≤ 10	Negreira et collab., 2013			

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
Isoamyl 4-méthoxycinnamate (IMC)									
Morue de l'Atlantique (<i>Gadus morhua</i>)			Océans Atlantique et Pacifique	≤ 1	Cunha et collab., 2018				
Mulet doré (<i>Liza aurata</i>)	Poissons	Muscles	Estuaire du Tage, Espagne	≤ 6	Cunha et collab., 2015b				
Plie et sole				≤ 1					
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 1 – 5	Cunha et collab., 2018				
2-éthylhexyl 4-méthoxycinnamate (EHMC)									
Chamelea gallina		Organisme entier Galice, Espagne	≤ 3	Cunha et collab., 2015b					
Coque commune (<i>Cerastoderma edule</i>)			Galice, Espagne	≤ 6	Negreira et collab., 2013				
			Waikiki, Oahu, Hawaii, États-Unis		Mitchelmore et collab., 2019				
Corail		Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 12,1					
			Kaneohe Bay, Oahu, Hawaii, États-Unis						
Crabe enragé (<i>Carcinus maenas</i>)	Invertébrés	Organisme entier	Oslafiard Narvàga	≤ 10					
Crevette nordique du Canada (<i>Pandalus borealis</i>)		Organisme entier	Osioljulu, Norvege	≤ 20	Langiora et conab., 2013				
Écrevisse virile (Orconectes virilis)		Chair	Baltimore, Maryland, États-Unis	≤ 0,6 - 83	He et collab., 2017				
Gammare (Gammarus sp.)		Organisme entier	Rivière Marbach, Suisse	91 – 133	Fent, Zenker et collab., 2010				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl 4-méthoxycinnamate (EHMC)									
Huître américaine				≤ 2 – 192,5	He et collab., 2019a					
(Crassostrea virginica)			Dale de Chesapeare, Maryland, Llais-Ohis	155 – 241	He et collab., 2017					
Moule commune (<i>Mytilus edulis</i>)			Océan Atlantique, France	3 – 256	Bachelot et collab., 2012					
Moule crochue			Baja da Chasanaaka Maryland États-Unis	≤2	He et collab., 2019a					
(Ischadium recurvum)			Dale de Oriesapeare, Maryland, Llais-Oriis	240 ± 13	He et collab., 2017					
			Mer Méditerranée, France	5 – 45	Bachelot et collab., 2012					
Moule méditerranéenne	Invertébrés	Organisme entier	Côte méditerranéenne, Portugal	≤ 1 – 1 765	Groz et collab., 2014					
Moule mediterraneenne (<i>Mytilus galloprovincialis</i>)			Océan Atlantique, Portugal	≤ 5 – 1 765	Picot Groz et collab., 2014					
			Galice, Espagne	≤ 6	Negreira et collab., 2013					
Moule zébrée			Lac de Greifen, Suisse	22 – 150	Fent, Zenker et collab.,					
(Dreissena polymorpha)			Rivière Glatt, Suisse	30	2010					
			Viana do Castelo, Portugal	≤ 2 – 51,3						
			Leça da Palmeira, Portugal	≤ 2 – 74,9	Castro et collab., 2018					
Moules méditerranéennes et			Plage de Vagueira, Portugal	≤ 2 – 67						
(<i>Mytilus galloprovincialis</i> et <i>M. edulis</i>)			Algés, Portugal	≤ 2 – 94,1						
			Costa da Caparica, Portugal	≤ 2 – 181,8						
			Aljezur, Portugal	≤ 2 – 26,2						
			Faro, Portugal	≤ 2 – 34,9						
Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
--	--	------------------	--------------------------------	-------------------------	---	--	--	--	--	--
	2-éthylhexyl 4-méthoxycinnamate (EHMC)									
Moules méditerranéennes et			Delta de l'Èbre, Espagne	≤ 20						
communes		Organismo option	Estuaire du Tage, Espagne	≤ 3	Cunha et collab., 2015b					
(Mytilus galioprovincialis et M. edulis)		Organisme entier	Estuaire du Pô, Italie	≤ 3						
<i>Mytilu</i> s sp.			Océans Atlantique et Pacifique	≤ 0,5 – 34,2	Cunha et collab., 2018					
Squilla	Invertébrés	Queue	Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
Oursin violet (Paracentrotus lividus)		Gonades et œufs	Carreço, Portugal	≤ 1	Rocha et collab., 2018					
Oursin violet		Gonades et œufs	Praia do Norte, Portugal	- ≤1	Pacha at callab 2018					
(Paracentrotus lividus)			Vila Chã, Portugal		Rocha et collab., 2016					
Ablette (Alburnus alburnus)			Fleuve Júcar, Espagne	≤ 16.7	Gago-Ferrero, Díaz-Cruz					
Achigan à grande bouche (<i>Micropterus salmoides</i>)					et collab., 2015					
Anchois			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
Anguille d'Europe	Poissons	Muscles	Fleuve Rhin, Suisse	30	Fent, Zenker et collab., 2010					
(Anguilla anguilla)			Fleuve Júcar, Espagne	≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Barbeau commun (<i>Barbus barbus</i>)			Rivière Glatt, Suisse	≤ 6 – 337	Fent, Zenker et collab., 2010					
Barbeau commun (<i>Barbus barbus</i>) et Chevesne (<i>Leuciscus cephalus</i>)			Rivière Glatt, Suisse	4 – 142	Zenker et collab., 2008					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
2-éthylhexyl 4-méthoxycinnamate (EHMC)										
Barbus guiraonis			Fleuve Júcar, Espagne	≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	2,5 – 74,4	Cunha et collab., 2018					
Bramidae			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
			Fleuve Llobregat, Espagne		Gago-Ferrero, Díaz-Cruz et collab., 2015 Fent, Zenker et collab.,					
Carpe commune (<i>Cyprinus carpio</i>)		Muscles	Fleuve Èbre, Espagne	≤ 16,7						
			Fleuve Guadalquivir, Espagne							
Chevesne			Lac de Greifen, Suisse	23 – 55						
(Leuciscus cephalus)	Poissons		Rivière Glatt, Suisse	41 – 79	2010					
Collichthys			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
			Lac de Pfäffikon, Suisse	≤ 380	- Balmer et collab., 2005					
Corégone lavaret (<i>Coregonus</i> sp.)			Lac de Thoune, Suisse	≤ 150						
			Lac Mjøsa, Norvège	≤ 5 – 117	Langford et collab., 2015					
Crapet-soleil (<i>Lepomis gibbosus</i>)			Fleuve Júcar, Espagne	≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Flet commun (<i>Platichthys flesus</i>)			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
Flet commun (<i>Platichthys flesus</i>)			Escaut occidental, Pays-Bas	≤ 3	Cunha et collab., 2015b					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence				
2-éthylhexyl 4-méthoxycinnamate (EHMC)									
			Lac de Zurich, Suisse	≤ 26 – 64					
Gardon (Rutilus rutilus)			Lac Hüttnersee, Suisse	≤ 25	Balmer et collab., 2005				
			Lac de Greifen, Suisse	≤ 21					
Gobie			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015				
Goujon ibérique (<i>Gobio Iozanoi</i>)			Fleuve Júcar, Espagne	≤ 16.7	Gago-Ferrero, Díaz-Cruz				
Grand brochet (<i>Esox lucius</i>)					et collab., 2015				
Lotte (<i>Lota lota</i>)			Lac Mjøsa, Norvège	≤ 5	Langford et collab., 2015				
luciobarbus graelleii	Poissons	Musslas	Fleuve Llobregat, Espagne	- ≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015				
Luciobarbus graensn	1 01330113	IVIUSCIES	Fleuve Èbre, Espagne						
Luciobarbus sclateri			Fleuve Guadalquivir, Espagne	≤ 5 – 241,7	Gago-Ferrero, Díaz-Cruz et collab., 2015, 2013				
Maguereau commun			Galice, Espagne	≤ 6	Negreira et collab., 2013				
(Scomber scombrus)			Océans Atlantique et Pacifique	≤ 0.5 - 28.7	Cunha et collab., 2018				
Morue de l'Atlantique (<i>Gadus morhua</i>)				- 0,0 - 20,1					
Mulet doré (<i>Liza aurata</i>)			Estuaire du Tage, Espagne	≤ 3	Cunha et collab., 2015b				
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	17,1 – 49,4	Molins-Delgado, Muñoz et collab., 2018				

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl 4-méthoxycinnamate (EHMC)									
Nase ibérique (Pseudochondrostoma polylepis)			Fleuve Júcar, Espagne	≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Ostéomugil			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
Omble chevalier			Ellasjøen, Norvège	8 – 39,3	Lucia at collab 2016					
(Salvelinus alpinus)			Erlingvatnet, Spitsbergen, Norvège	5 – 13,7						
Perche commune			Lac Hüttnersee, Suisse	≤ 56	Balmer et collab., 2005					
(Perca fluviatilis)			Lac Mjøsa, Norvège	≤ 5 – 35,7	Langford et collab., 2015					
Plie et sole		Muscles	Océans Atlantique et Pacifique	≤ 0,5	Cunha et collab., 2018					
Poisson-flèche	-		Pivière des Perles, Chine	< 10	Peng et collab 2015					
Poissons-manches	Deissens		Niviere des l'effes, Office	10	r eng et collab., 2015					
Silure glane (<i>Silurus glanis</i>)	Poissons		Fleuve Èbre, Espagne	12,2 – 30,4	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 0,5 – 2,5	Cunha et collab., 2018					
Trichiurus			Rivière des Perles, Chine	≤ 10	Peng et collab., 2015					
			Fleuve Júcar, Espagne	≤ 16,7	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Truite commune			Rivière Marbach, Suisse	≤ 6 – 205	Fent, Zenker et collab., 2010					
(Salmo trutta)			Rivière Birs, Suisse	11 – 41						
			Rivière Ergolz, Suisse	≤ 6 – 61						
			Rivière Lutzelbourg, Suisse	≤ 6 – 104						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl 4-méthoxycinnamate (EHMC)									
Morue de l'Atlantique (<i>Gadus morhua</i>)		Foie	Oslofjord, Norvège	≤ 30 – 36,9	Langford et collab., 2015					
Mulet lebranche	Poissons		Raio do Guanabara, Présil	6,92 – 98,8	Molins-Delgado, Muñoz					
(Mugil liza)		Branchies	Dale de Gualiabaia, Diesii	7,27	et collab., 2018					
Cormoran (<i>Phalacrocorax</i> sp.)		Muscles	Fleuve Rhin, Suisse	16 – 701	Fent, Zenker et collab., 2010					
Goéland bourgmestre (<i>Larus hyperboreus</i>)	Oiseaux		Kapp Guissez, Norvège		Lucia et collab., 2016					
Mouette tridactyle ou des brumes		Œufs	Krykkjefjellet, Norvège	≤ 20						
would inductive ou des brumes			Observasjonsholmen, Norvège							
		Graisse de la mère		≤ 1,5 – 85						
		Muscles de la mère		42,5 – 67,5						
Dauphin de la Plata	Mammifères	Placenta	Brésil	≤ 1,5	Alonso et collab 2015					
(Franciscana dolphin)	Mammerco	Graisse du fœtus	Dicon	≤ 1,5 – 117	7 10130 Ct Collab., 2013					
		Graisse du veau		67						
		Muscles du fœtus		69 – 250						
		Muscles du veau		133						

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	2-éthylhexyl 4-méthoxycinnamate (EHMC)									
		Graisse de la mère		≤ 1,5 – 205						
Dauphin de Guyane (<i>Guiana dolphin</i>)	Mammifères	Muscles de la mère	Brésil	70 – 545	Alonso et collab., 2015					
		Graisse du fœtus		≤ 1,5						
		Muscles du fœtus		40 – 85						
	Octocrylène (OC)									
Chamelea gallina			Delta de l'Èbre, Espagne	≤ 23	Cunha et collab., 2015b					
Coque commune (Cerastoderma edule)		Organisme entier	Galice, Espagne	≤ 4	Negreira et collab., 2013					
		Tissus mous	Waikiki, Oahu, Hawaii, États-Unis	28,2 - 800	Mitchelmore et collab., 2019					
Corail			Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 3 – 221,4						
			Kaneohe Bay, Oahu, Hawaii, États-Unis	13,5 – 76						
Crabe		Chair	Océans Atlantique et Pacifique	≤ 3	Cunha et collab., 2018					
Crabe enragé (Carcinus maenas)	- Invertebres	Organismo ontior	Oslofierd Nervère	≤ 10						
Crevette nordique du Canada (<i>Pandalus borealis</i>)		Organisme entier	Osioljora, Norvege	≤ 10 – 23,1	Langiora et collab., 2015					
Écrevisse virile (Orconectes virilis)		Chair	Baltimore, Maryland, États-Unis	3,4 – 113	He et collab., 2017					
Huître américaine		Organisme entior	Baja da Chasanaaka Manuland	≤ 3,3 – 20,4	He et collab., 2019a					
(Crassostrea virginica)			Dale de Chesapeare, Maryland,	≤ 1 – 6,6	He et collab., 2017					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Octocrylène (OC)									
Moule commune (<i>Mytilus edulis</i>)			Océan Atlantique, France	≤2-7112	Bachelot et collab., 2012					
Moule crochue			Baje de Chesaneake, Maryland	≤ 3,3	He et collab., 2019a					
(Ischadium recurvum)			Dale de Chesapeare, Maryland,	14,4 ± 0,6	He et collab., 2017					
			Côte méditerranéenne, Portugal	≤ 5 – 3 992	Groz et collab., 2014					
Moule méditerranéenne (<i>Mytilus galloprovincialis</i>)		Organisme entier	Océan Atlantique, Portugal	≤ 5 – 3 992	Picot Groz et collab., 2014					
			Galice, Espagne	15 – 260	Negreira et collab., 2013					
	Invertébrés		Mer Méditerranée, France	≤ 2 – 23	Bachelot et collab., 2012					
Moules méditerranéennes et	inventebres		Delta de l'Èbre, Espagne	≤ 100 - ≤ 23	Cunha et collab., 2015b					
communes			Estuaire du Tage, Espagne							
(Mytilus galloprovincialis et M. edulis)			Estuaire du Pô, Italie							
<i>Mytilus</i> sp.			Océans Atlantique et Pacifique	≤ 3 – 56	Cunha et collab., 2018					
Squilla		Queue	Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015					
			Carreço, Portugal	≤ 1						
Oursin violet (Paracentrotus lividus)		Gonades et œufs	Praia do Norte, Portugal	6,3 – 15,1	Rocha et collab., 2018					
х, У			Vila Chã, Portugal	2,5 – 16						
Ablette (Alburnus alburnus)	Poissons	Muscles	Fleuve Júcar, Espagne	≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
	Octocrylène (OC)									
Achigan à grande bouche			North Shore Channel, Chicago, Illinois, États-Unis	≤ 36	Ramirez et collab., 2009					
(micropierus saimoides)				≤ 20	Gago-Formero Díaz-Cruz					
Anguille d'Europe (<i>Anguilla anguill</i> a)			Fleuve Júcar, Espagne	≤ 20 – 30	et collab., 2015					
Anchois			Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015					
Barbus guiraonis			Fleuve Júcar, Espagne	≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015					
Baudroie (<i>Lophius</i> sp.)			Océans Atlantique et Pacifique	≤ 3 – 19,3	Cunha et collab., 2018					
Bramidae	Poissons	Muscles	Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015					
Buffle à petite bouche (<i>Ictiobus bubalus</i>)			Fleuve Trinity, Dallas, Texas, États-Unis	≤ 36	Ramirez et collab., 2009					
			Fleuve Guadalquivir, Espagne	≤ 20						
Carpe commune			Fleuve Llobregat, Espagne		Gago-Ferrero, Díaz-Cruz et collab., 2015					
(Cyprinus carpio)			Fleuve Èbre, Espagne							
			Rivière Salée, Arizona, États-Unis	≤ 36	Ramirez et collab., 2009					
Catastamus insignis			Rivière Gila, Nouveau-Mexique, États-Unis	< 26	Mottaleb et collab., 2009					
Calosiomus insignis				≤ 36	Ramirez et collab., 2009					
Collichthys			Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Oc	tocrylène (OC)		
			Lac de Pfäffikon, Suisse	≤ 59	Dolmor et colleb 2005
Corégone lavaret (<i>Coregonus</i> sp.)			Lac de Thoune, Suisse	≤ 23	- Daimer et collab., 2005
			Lac Mjøsa, Norvège	≤ 2	Langford et collab., 2015
Crapet arlequin (Lepomis macrochirus)			Pecan et Clear Creek, Texas, États-Unis	≤ 17	Mottaleb et collab., 2009
Crapet-soleil (<i>Lepomis gibbosus</i>)			Fleuve Júcar, Espagne	≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015
Flet commun		Muscles	Escaut occidental	≤ 23	Cunha et collab., 2015b
(Platichthys flesus)			Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015
			Lac Hüttnersee, Suisse	≤ 5	Balmer et collab., 2005
Gardon (<i>Rutilus rutilus</i>)	Poissons		Lac de Zurich, Suisse	≤7	
			Lac de Greifen, Suisse	≤ 4	
Gobie			Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015
Goujon ibérique (<i>Gobio lozanoi</i>)			Eleuve lúcar Espagne	< 20	Gago-Ferrero, Díaz-Cruz
Grand brochet (<i>Esox lucius</i>)			ricave oddar, Espagne	- 20	et collab., 2015
Lotte (<i>Lota lota</i>)			Lac Mjøsa, Norvège	≤2	Langford et collab., 2015
l uciobarbus graelleii			Fleuve Llobregat, Espagne	< 20	Gago-Ferrero, Díaz-Cruz
			Fleuve Èbre, Espagne	20	et collab., 2015

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		0	ctocrylène (OC)		
				≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015
Luciobarbus scialem			Fieuve Guadaiquivii, Espagne	≤ 20 – 30,4	Gago-Ferrero, Díaz-Cruz et collab., 2013
Maquereau commun			Océans Atlantique et Pacifique	≤ 3 – 43,2	Cunha et collab., 2018
(Scomber scombrus)			Galice, Espagne	18 – 281	Negreira et collab., 2013
Meunier noir (<i>Catostomus commersonii</i>)			Taylor Run, West Chester, Pennsylvanie, États-Unis	≤ 36	Ramirez et collab., 2009
Morue de l'Atlantique (<i>Gadus morhua</i>)			Océans Atlantique et Pacifique	≤ 3 – 39,1	Cunha et collab., 2018
Mulet doré (<i>Liza aurat</i> a)	Poissons	Muscles	Estuaire du Tage, Espagne	≤ 23	Cunha et collab., 2015b
Mulet lebranche (<i>Mugil liza</i>)			Baie de Guanabara, Brésil	5,2 – 58	Molins-Delgado, Muñoz et collab., 2018
Nase ibérique (Pseudochondrostoma polylepis)			Fleuve Júcar, Espagne	≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015
Omble chevalier			Ellasjøen, Norvège	≤ 3	Lucia at callab 2016
(Salvelinus alpinus)			Erlingvatnet, Spitsbergen, Norvège	≤ 4	
Ostéomugil			Rivière des Perles, Chine	≤ 0,1	Peng et collab., 2015
Perche commune			Lac Hüttnersee, Suisse	25	Balmer et collab., 2005
(Perca fluviatilis)			Lac Mjøsa, Norvège	≤ 2 – 2,1	Langford et collab., 2015

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence
		Oc	tocrylène (OC)		
Poisson-castor (<i>Amia calva</i>)			Rivière Econlockhatchee, Orlando, Floride, États-Unis	≤ 36	Ramirez et collab., 2009
Poisson-flèche			Divière des Darles, Chine	< 0.1	_
Poissons-manches			Rivière des Peries, Chine	≤ 0,1	Peng et collab., 2015
Silure glane (<i>Silurus glanis</i>)			Fleuve Èbre, Espagne	≤ 20 – 25,7	Gago-Ferrero, Díaz-Cruz et collab., 2015
Thon (<i>Tuna</i> sp.)			Océans Atlantique et Pacifique	≤ 3 – 5	Cunha et collab., 2018
		Muscles	Rivière Lutzelmurg, Suisse	105 – 540	
			Rivière Glatt, Suisse	150 – 2 400	Buser et collab., 2006
	Poissons		Rivière Frenke, Suisse	40 – 1 700	
			Rivière Langete, Suisse	230 – 430	
(Salmo trutta)			Rivière Sissle, Suisse	990	
			Rivière Surb, Suisse	370 – 450	
			Rivière Winkelbach, Suisse	710 – 1 400	
			Fleuve Júcar, Espagne	≤ 20	Gago-Ferrero, Díaz-Cruz et collab., 2015
Mulet lebranche (<i>Mugil liza</i>)		Foio	Baie de Guanabara, Brésil	5,03 – 25,9	Molins-Delgado, Muñoz et collab., 2018
Morue de l'Atlantique (<i>Gadus morhua</i>)		FOIE	Oslofjord, Norvège	≤ 20 – 11 875	Langford et collab., 2015

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence					
Octocrylène (OC)										
Mulet lebranche (<i>Mugil liza</i>)	Poissons	Branchies	Baie de Guanabara, Brésil	2,4 – 16,8	Molins-Delgado, Muñoz et collab., 2018					
Busard des roseaux (<i>Circus aeruginosus</i>)				< 0.96						
Canard chipeau (<i>Anas strepera</i>)				≥ 0,86						
Cigogne blanche (<i>Ciconia ciconia</i>)	-			15,2 – 26,6	Molins-Delgado, Manez et collab., 2017					
Faucon crécerelle (<i>Falco tinnunculus</i>)	-		Parc national de Doñana, Espagne	≤ 0,86						
Goéland railleur (Chroicocephalus genei)	Oiseaux	Œufs		≤ 0,86						
Mouette rieuse (Chroicocephalus ridibundus)				11,4 – 65,2	-					
Sterne hansel (Gelochelidon nilotica)				≤ 0,86						
Goéland bourgmestre (Larus hyperboreus)			Kapp Guissez, Norvège							
			Krykkjefjellet, Norvège	≦ 17	Lucia et collab., 2016					
Modelle Indactyle od des brumes			Observasjonsholmen, Norvège							
Dauphin de la Plata	Mammifàras	Graisse de la mère	– Brésil	≤ 1,5 – 113	Alonso at callab 2015					
(Franciscana dolphin)	Mammifères —	Muscles de la mère		≤ 1,5	Alonso et collad., 2015					

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence	
		Oct	ocrylène (OC)			
		Placenta		≤ 1,5		
		Graisse du fœtus		≤ 1,5 – 50		
Dauphin de la Plata (<i>Franciscana dolphin</i>)		Muscles du fœtus		≤ 1,5 – 11 130		
		Graisse du veau		≤ 1,5	Alonso et collab., 2015	
	- Mammifères	Muscles du veau	_ /	925		
Dauphin de Guyane (<i>Guiana dolphin</i>)		Graisse de la mère	Brêsil	≤ 1,5 – 220		
		Muscles de la mère		970 – 8 310		
		Graisse du fœtus		≤ 1,5		
		Muscles du fœtus		115 – 240		
Butyl-méthoxy dibenzoylméthane (BMDM)						
			Waikiki, Oahu, Hawaii, États-Unis	≤ 12 – 164,6		
Corail	Invortábrác	Tissus mous	Ka'a'awa, Oahu, Hawaii, États-Unis	≤ 12 – 291,3	Mitchelmore et collab., 2019	
	inventebres		Kaneohe Bay, Oahu, Hawaii, États-Unis	≤ 12 – 60,2		
Squilla		Muscles	Rivière des Perles, Chine	≤ 1	Peng et collab., 2015	

Espèce	Niveau trophique	Organe	Localisation	Concentration (ng/g)	Référence		
Butyl-méthoxy dibenzoylméthane (BMDM)							
Anchois							
Bramidae							
Collichthys							
Flet							
Gobie	Poissons	Muscles	Rivière des Perles, Chine	≤ 1	Peng et collab., 2015		
Ostéomugil							
Poisson-flèche							
Poissons-manches							
Trichiurus							

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone (BP)						
Caenorhabditis elegans	CL ₅₀	24 heures	56,8	Ura et collab., 2002		
Ceriodaphnia dubia	CL ₅₀	24 heures	7,6	Marchini et collab., 1993		
Chlorella vulgaris	CE ₅₀ (croissance)	96 heures	6,86	Sun et collab., 2016		
	CL ₅₀	24 heures	7,63	Sun et collab., 2016		
Daphnia magna	CL ₅₀	24 heures	0,28	Tosato et collab., 1991		
	CE₅₀ (mobilité)	48 heures	9,51	Liu, Sun et collab., 2015		
Danio rerio	CL ₅₀	9 heures	14,73	Sun et collab., 2016		
	CL ₅₀	24 heures	15,8			
Dugosia ianonica		48 heures	5	Li 2012		
Duyesia japonica		72 heures	5	LI, 2012		
		96 heures	5			
Gladioferens pectinatus	CE ₁₀ (mobilité)		0,33			
	CE₅₀ (mobilité)	48 heures	1,51	Guyon et collab., 2018		
	CE ₉₀ (mobilité)		3,99			

Tableau 22 – Données de toxicité disponibles quant aux effets des filtres UV pour les organismes aquatiques

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone (BP)						
Lemna minor	CMEO (chlorophylle)	7 jours	1,5625	Fekete-Kertész et collab., 2015		
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	34,26	Liu, Sun et collab., 2015		
	CE ₅₀	24 heures	5,9			
	(comportement)	48 heures	4,8	Call et collab 1070		
Pimephales promelas	CL ₅₀	24 heures	6,1			
	CL ₅₀	48 heures	4,8			
	CSEO (poids)		0,54	Call et collab., 1985		
	CMEO (poids)	32 jours	0,99			
	CMEO (survie)		6,38			
	CE ₂₀ (croissance)	22 iouro	1,92	- Call et collab., 1993		
	CE ₅₀ (croissance)	SZ JOUIS	3,68			
	CL ₅₀	24 heures	10,9	Marchini et collab., 1993		
	CL ₅₀	96 heures	15,3	Veith et collab., 1983		
	CL ₅₀	96 heures	14,2	Brooke, 1984		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzo	ophénone (BP)		
	CMEO (mortalité)		6,33	
	CMEO (poids)		1,78	
	CMEO (longueur)	20 iouro	3,32	
	CSEO (mortalité)	32 jours	3,32	Parron et Adelman 1094
	CSEO (poids)		1,78	
Pimenhales prometas	CSEO (longueur)		1,03	
r intephates promotas	CMEO (survie)	96 heures	8,28	
	CMEO (croissance)		2,62	
	CMEO (longueur)	32 jours	1,78	Barron et Adelman, 1904
	CMEO (poids)	32 jours	0,99	
	CE ₂₅ (croissance)		2,6237	Marchini et collab 1992
	CE ₅₀ (croissance)	7 jours	4,555	- IMarchini et Collad., 1992

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone (BP)						
	CE ₂₅ (biomasse)		2,66				
	CE ₅₀ (biomasse)	7 jours	4,3				
	CL ₅₀ (mortalité des larves)		6,65				
	CL ₅₀ (mortalité des juvéniles)	96 heures –	14,2 – 15,3				
Pimephales promelas	CL ₅₀ (mortalité des larves)		10,9	Marchini et collab., 1992			
	CMEO (mortalité)	7 jours	9,24				
	CMEO (croissance)		3,1				
	CSEO (mortalité)		5,86				
	CSEO (croissance)		2,1				
Vibrio fischeri	CE ₅₀ (luminescence)	15 minutes	18,85	Zhang, Ma et collab., 2017			
	Benzophénone-1 (BP-1)						
Acartia tonsa	CE ₁₀ (développement)	5,58 jours	0,022 – 0,22	Kusk et collab., 2011			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-1 (BP-1)						
	CE₅₀ (développement)	5,58 jours	0,49 – 1,5			
	CL ₁₀	24 heures	1,2			
Acartia tonsa	CL ₁₀	48 heures	1,3	Kusk et collab., 2011		
	CL ₅₀	24 heures	2,6			
	CL ₅₀	48 heures	2,6			
Aliivibrio fischeri	CE₅₀ (luminescence)	15 minutes	977,67	Ma, Dong et collab., 2020		
Carassius auratus	CSEO (mortalité)	28 jours	4,7	Liu, Sun et collab., 2015		
Chlorella vulgaris	CE ₅₀ (croissance)	96 heures	6,86	Sun et collab., 2016		
	CE ₅₀ (mobilité)	48 heures	16,25	Liu, Sun et collab., 2015		
Daphnia magna		24 heures	7,2			
	CE₅₀ (mobilité)	48 heures	5,2	Molins-Delgado, Gago-Ferrero et collab., 2016		
		72 heures	3,9			
		24 heures	4,5			
	Cl re	48 heures	2,8	Li 2012		
συμεδια japonica	UL50	72 heures	2,8	LI, 2012		
		96 heures	2,8			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-1 (BP-1)						
	CMEO (croissance)	7 ioure	1	Map et collab 2020		
	CMEO (chlorophylle <i>a</i>)	7 jours	0,001			
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	14,21	Liu, Sun et collab., 2015		
Pimephales promelas	CSEO (survie)		0,98			
	CMEO (survie)		4,92	Kupz at collabe 2006		
	CSEO (poids)	14 jouro	0,98			
	CMEO (poids)	- 14 jours	4,92	- Kunz el collad., 2006		
	CSEO (longueur)		0,98			
	CMEO (longueur)		4,92			
Pocillopora damicornis	CMEO (survie des adultes)	Zioure	1			
	CSEO (survie des adultes)	<i>i</i> jours	0,75	He et collab., 2019b		
	CMEO (blanchiment des adultes)	14 jours	1			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-1 (BP-1)		
Pocillopora damicornis	CSEO (densité de zooxanthelles)	14 jouro	1	
	CMEO (rétraction totale des polypes)	14 jours	I	
Panhidocelis subcanitata	CE ₅₀	48 heures	13,3	Molins-Delgado, Gago-Ferrero et
	(croissance)	72 heures	10,5	collab., 2016
	CSEO (survie des larves)	14 jours	1	
	CL ₁₀₀ (survie des adultes)	7 jours	1	
	CMEO (établissement larvaire)		0,01	
	CE50 (établissement larvaire)		0,18413	
Seriatopora caliendrum	CMEO (blanchiment des adultes)		1	He et collab., 2019b
	CMEO (blanchiment des larves)	14 jours	0,5	
	CSEO (densité de zooxanthelles)		0,1	
	CMEO (densité de zooxanthelles)		1	
	CMEO (rétraction totale des polypes)		1	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone-2 (BP-2)						
Carassius auratus	CSEO (mortalité)	28 jours	4,78	Liu, Sun et collab., 2015			
Daphnia magna	CE ₅₀ (mobilité)	48 heures	48,26	Liu, Sun et collab., 2015			
Dania raria	CL ₁₀	72 heures	9,11	Thioppont at callab 2011			
Danio Teno	CL ₅₀	72 heures	11,82	Therport et collab., 2011			
		24 heures	8,3				
Duracia ianonica	CL ₅₀	48 heures	6,5	Li, 2012			
Dugesia japonica		72 heures	5,9				
		96 heures	4,4				
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	8,24	Liu, Sun et collab., 2015			
	CSEO (survie)		8,78	- Kunz et collab., 2006			
Pimephales promelas	CSEO (poids)	14 jouro	8,78				
	CSEO (longueur)	14 jours	1,07				
	CMEO (longueur)		8,78				
	CSEO (indice de condition des mâles)	15 jours	5	Weisbrod et collab., 2007			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
Benzophénone-2 (BP-2)							
	CMEO (indice de condition des mâles)		9,7				
	CSEO (indice de condition des femelles)						
Pimephales promelas	CSEO (Survie)	15 jours		Weisbrod et collab., 2007			
	CSEO (longueur)						
	CSEO (poids)						
Stylophora pistillata	CE ₂₀ (développement)	24 heures	0,000246 – 0,139				
	CE ₂₀ (développement)	8 heures	0.00714 – 0,033				
	CE ₅₀ (développement)	24 heures	0,019 – 0,428				
	CE₅₀ (développement)	8 heures	0,315 – 1,652	Downs et collab., 2016			
	CL ₅₀	8 heures	28,315 – 155,871				
	CL ₅₀	24 heures	0,165 – 508				
	CMEO (développement)	8 heures	0,0246				
	CMEO (mortalité)	8 heures	246				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-2 (BP-2)						
	CMEO (développement)		0,0246			
Stylophora nistillata	CMEO (mortalité)	24 heures	0,246	Downs at collab 2016		
<i>σιγιομιστά μισμιατά</i>	CSEO (mortalité)		0,0246	Downs et collab., 2016		
	CSEO (mortalité)	8 heures	24,6			
	Benzop	hénone-3 (BP-3)				
	CL ₂₀	4 heures	0,063	Downs et collab., 2016		
Actopola cervicomis	CL ₅₀		0,009			
Algoriphagus mannitolivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Algoriphagus ornithinivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Aliivibrio fischeri	CE ₅₀ (luminescence)	15 minutes	68,28	Ma, Dong et collab., 2020		
Alteromonas genovensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Alteromonas marina	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Artemia salina	CSEO (survie)	48 heures	2	Thorel et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-3 (BP-3)		
Arthrobacter aurescens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
	CSEO (chlorophylle)	1 jour	0,228	
	CSEO (chlorophylle)	4 jours	0,228	
	CSEO (chlorophylle)	8 jours	0,228	
<i>Arthrospira</i> sp.	CSEO (chlorophylle)	12 jours	0,000228	
	CMEO (chlorophylle)	12 jours	0,00228	
	CSEO (chlorophylle)	16 jours	0,000114	Zhong et collab., 2019
	CMEO (chlorophylle)	16 jours	0,000228	
	CMEO (chlorophylle)	20 jours	2,28e-5	
	CSEO (poids sec)	1 jour	11,4	
	CSEO (poids sec)	2 jours	2,28	
	CMEO (poids sec)	2 jours	11,4	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzoj	phénone-3 (BP-3)		
	CSEO (poids sec)	3 jours	0,228	
	CMEO (poids sec)	3 jours	2,28	
	CSEO (poids sec)	4 jours	0,228	
	CMEO (poids sec)	4 jours	2,28	
Arthroenira sp	CSEO (poids sec)	5 jours	0,228	Zhong et collab 2019
Αιμποερίτα ερ.	CMEO (poids sec)	5 jours	2,28	
	CSEO (poids sec)	6 jours	0,228	
	CMEO (poids sec)	6 jours	2,28	
	CSEO (poids sec)	7 jours	0,228	
	CMEO (poids sec)	7 jours	2,28	
Bacillus megaterium	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Betta splendens	CSEO (distance de nage totale parcourue)	28 jours	1	Chen et collab., 2016

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-3 (BP-3)		
	CMEO (vitesse maximale de nage)		1	
Betta splendens	CSEO (vitesse maximale de nage)	28 jours	0,1	Chen et collab., 2016
	CMEO (durée de l'affichage operculaire)		0,01	
Brachybacterium sacelli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Carassius auratus	CSEO (mortalité)	28 jours	4,76	Liu, Sun et collab., 2015
	CSEO (mortalité)	24 heures	1	Ozáez et collab., 2013
	CMEO (mortalité)		10	
		24 heures	194,394	
	0	48 heures	32,099	- Ozáez et collab., 2016
Chironomus riparius	CL50	72 heures	2,321	
		96 heures	1,709	
	CSEO (mortalité)	72 heures	0,91299	Ozáez et collab., 2014
	CMEO	28 jours	0,75	- Campos et collab., 2017a
	(croissance des larves) 28 jours	20 jours	3,41	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
	CMEO (poids des imagos mâles)	20 iouro	2.44	Compass at callab 2017a		
Chironomus riparius	CSEO (poids des imagos femelles)	20 jours	3,41	Campos et collab., 2017a		
	CE ₅₀ (chlorophylle <i>a</i>)	10 iours	1,85			
Chlamydomonas reinhardtii	CE ₂₀ (chlorophylle <i>a</i>)	TO JOURS	0,64	Mao, He et collab., 2017		
	CE ₅₀ (croissance)	72 heures	1,85			
	CE ₅₀ (croissance)	96 heures	5	Esperanza et collab., 2019		
	CMEO (croissance)		2,5			
	CE ₅₀ (croissance)		22,4	Pablos et collab., 2015		
Chlorella vulgaris	CE ₁₀ (croissance)	72 heures	2,2			
	CSEO (croissance)		3,12			
	CE ₅₀ (croissance)	96 heures	2,98	Du et collab., 2017		
Chlorella sp.	CSEO (chlorophylle)	1 jour	0,228	Zhong et collab., 2019		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benz	cophénone-3 (BP-3)		
	CSEO (chlorophylle)	4 jours	0,228	
	CSEO (chlorophylle)	8 jours	0,000228	
	CMEO (chlorophylle)	8 jours	0,00228	
	CSEO (chlorophylle)	12 jours	2,28e-5	
	CMEO (chlorophylle)	12 jours	0,000114	7
Chlorollasa	CSEO (chlorophylle)	16 jours	2,28e-5	
Gniorena sp.	CMEO (chlorophylle)	16 jours	0,000114	Zhong et collab., 2019
	CMEO (chlorophylle)	20 jours	2,28e-5	
	CSEO (poids sec)	1 jour	11,4	
	CSEO (poids sec)	2 jours	2,28	_
	CMEO (poids sec)	2 jours	11,4	
	CSEO (poids sec)	3 jours	0,228	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
	CMEO (poids sec)	3 jours	2,28			
	CSEO (poids sec)	4 jours	0,228			
Chlorella sp	CMEO (poids sec)	4 jours	2,28	Zhong et collab 2010		
Chiorena sp.	CMEO (poids sec)	5 jours	0,228			
	CMEO (poids sec)	6 jours	0,228			
	CMEO (poids sec)	7 jours	0,228			
	CL ₅₀	96 heures	3,9	Du et collab., 2017		
	CSEO (poids des adultes)	12 jours	0,5	- Kinnberg et collab., 2015		
Danio rerio	CSEO (mortalité des adultes)	12 jours	0,5			
	CSEO (poids des adultes)		0,312			
	CSEO (longueur des adultes)	14 jours	0,312	Bluthgen et collab., 2012		
	CSEO (survie des adultes)		0,312			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzopl	hénone-3 (BP-3)		
	CSEO (indice de condition des adultes)	14 jours	0,312	Bluthgen et collab., 2012
	CL_{50} (survie des embryons)	96 heures	15,93	Balázs et collab., 2016
Danio rerio	CSEO (survie des embryons)	120 heures	0,438	Bluthgen et collab., 2012
	CSEO (survie des larves)	144 bourse	0.5	Zhang, Ma et collab., 2017
	CSEO (comportement des larves)	144 neures	0,5	
	CSEO (mobilité)	48 heures	10	Layton, 2015
	CL ₅₀		1,1	Du et collab., 2017
		24 heures	2,7	
	CE₅₀ (mobilité)	48 heures	1,9	Molins-Delgado, Gago-Ferrero et collab., 2016
Daphnia magna		72 heures	1,6	
	CSEO (alimentation)	24 heures	0,4	Pablos et collab., 2015
	CE₅₀ (mobilité)	48 heures	2,01	Liu, Sun et collab., 2015
	CL ₅₀		1,9	Fent, Kunz et collab., 2010

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-3 (BP-3)		
Danhnia magna	CE ₁₀ (mobilité)	18 beures	1,24	Sieratowicz et collab 2011
Dapinia mayna	CE₅₀ (mobilité)	40 fieures	1,67	
Desmodesmus subspicatus	CE ₁₀ (croissance)	72 beures	0,61	Sieratowicz et collab 2011
Desmodesmus subspicatus	CE ₅₀ (croissance)	- 72 heures	0,96	- Sieratowicz et collad., 2011
Dietzia maris	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
	CL ₅₀	24 heures	2,2	_ Li, 2012
Duraccia ianonica		48 heures	0,9	
Dugesia japonica		72 heures	0,7	
		96 heures	0,5	
Enterovibrio calviensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Epibacterium mobile	CMEO (croissance)	48 heures	1	Lozano et collab., 2020
Erythrobacter citreus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Erythrobacter nanhaisediminis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
Halobacillus dabanensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	CE ₁₀ (croissance)		0,00369			
laasha calhana	CE ₅₀ (croissance)	70 houroo	0,01387	Deredes et celleb 2014		
Isochrysis galbana	CMEO (croissance)		0,3	- Paredes et collad., 2014		
	CSEO (croissance)		0,03			
Maribacter dokdoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	CSEO (croissance)	7 jours	1	Mao et collab., 2020		
Microsvotio correginoco	CMEO (chlorophylle a)	7 jours	1E-05	Mao et collab., 2020		
Microcysus aeruginosa	CE ₅₀ (chlorophylle <i>a</i>)	10 iouro	1,17	Mag et cellab 2017		
	CE ₂₀ (chlorophylle a)		2,46			
Montostropa annularia	CL ₂₀	4 houros	0,562	Downs at collab 2016		
พบแลงและส สาแนเล่าใจ	CL ₅₀	4 1160165	0,074	Downs et collab., 2016		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-3 (BP-3)		
Montactraea cavernosa	CL ₂₀	4 hourss	0,502	Downs at collab 2016
womastraea cavernosa	CL ₅₀	4 neures	0,052	Downs et collab., 2010
	CE ₁₀ (développement)		2,146	
Mutiluo colloprovincialio	CE₅₀ (développement)	19 hourse	3,47259	Daradas et sellah 2014
Mythus ganoprovincians	CMEO (développement)	- 48 neures	0,3	Paredes et collab., 2014
	CSEO (développement)		0,03	
Olleya marilimosa	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Oncorhynchus mykiss	CSEO (mortalité)	14 jours	0,749	Coronado et collab., 2008
	CSEO (mortalité)	21 jours	0,62	Coronado et collab., 2008
		14 jours	0,09	
Oryzias latipe	CSEO	21 jours	0,09	
	(survie)	28 jours	0,09	Kim at collab 2014
		30 jours	0,09	
	CSEO	14 jours	0,09	
	(indice de condition)	30 jours	0,09	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
Benzophénone-3 (BP-3)					
	CSEO	14 jours	0,09		
Oryzias latipe	(poids)	30 jours	0,09	Kim et collab., 2014	
	CSEO (longueur)	14 jours	0,09		
Paenibacillus glucanolyticus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
	CE ₁₀ (croissance)		2,42322	Paredes et collab., 2014	
Paracentrotus lividus	CE ₅₀ (croissance)	48 heures	3,28		
	CMEO (croissance)		3,84		
Paracentrotus lividus	CSEO (croissance)	48 heures	1,92	Paredes et collab., 2014	
Paracoccus hibiscisoli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Paraglaciecola mesophila	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Pelagibacterium halotolerans	CMEO (croissance)	48 heures	1	Lozano et collab., 2020	
Phaeobacter inhibens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	14,27	Liu, Sun et collab., 2015	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
	CSEO (survie)	14 jours	3,9			
	CSEO (poids)	14 jours	0,77			
Pimephales promelas	CMEO (poids)	14 jours	3,9	Kunz et collab., 2006		
	CSEO (longueur)	14 jours	0,77			
	CMEO (longueur)	14 jours	3,9			
Pocillopora damicornis	CSEO (survie des adultes)	7 jours	1	He et collab., 2019b		
	CSEO (densité de zooxanthelles)	14 jours	1	He et collab., 2019b		
Pocillopora damicornis	CL ₂₀	4 houros	0,062	Downs at callab 2016		
	CL ₅₀	4 fieures	0,008	Downs et collab., 2010		
Poritos estracidos	CL ₂₀		0,008			
Pontes astreoides	CL ₅₀	4 houroo	0,34	Downs et collab., 2016		
Porites divaricata	CL ₂₀	4 neules	0,175			
	CL ₅₀		0,036			
Pseudoalteromonas agarivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
--------------------------------	--	-----------------------	------------------	--------------------------		
	Benzop	hénone-3 (BP-3)				
Pseudoalteromonas hodoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pseudomonas kunmingensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Rheinheimera baltica	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Sabulilitoribacter multivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Scenedesmus vacuolatus	CE ₅₀ (croissance)	24 heures	0,36	Rodil et collab., 2009a		
Sericostoma vittatum	CMEO (diminution de 54 % du taux d'alimentation)	6 jours	3,55	Campos et collab., 2017b		
	CSEO (survie des larves)	14 jours	1	- He et collab., 2019b		
	CMEO (survie des adultes)	7 jours	≥ 1			
Seriatopora caliendrum	CSEO (établissement larvaire)	14 jours	1			
	CMEO (blanchiment des larves)	14 jours	1			
	CMEO (blanchiment des adultes)	14 jours	1			
	CSEO (densité de zooxanthelles)	14 jours	1			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
Seriatopora caliendrum	CMEO (rétraction totale des polypes)	14 jours	0,01	He et collab., 2019b		
	CL ₁₀		0,4211			
	CL ₅₀		0,71076			
Siriella armata	CMEO (mortalité)	96 heures	0,5	Paredes et collab., 2014		
	CSEO (mortalité)		0,375			
Skeletonema pseudocostatum	CE ₅₀ (croissance)	72 heures	0,25	Petersen et collab., 2014		
	CSEO (survie)	14 jours	50	Ziarrusta et collab., 2018b		
Sparus aurata	CSEO (poids)					
	CSEO (croissance)					
Stylophora pistillata	CE ₂₀ (développement)	24 heures	0,0065 - 0,0104			
	CE ₂₀ (développement)	8 heures	0,0063 – 0,0155	Downo at colleber 2016		
	CE ₅₀ (développement)	24 heures	0,017 – 0,137			
	CE ₅₀ (développement)	8 heures	0,107 – 0,737			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-3 (BP-3)		
	CL ₂₀	4 heures	0,002 - 0,014	
	CL ₅₀	4 heures	0,042 – 0,671	
	CL ₅₀	8 heures	2,876 –16,8	
	CL ₅₀	24 heures	0,1038 – 0,8734	
	CMEO (mortalité)	4 heures	0,00057 – 0,0057	
	CMEO (développement)	8 heures	0,0228	Downs et collab., 2016
Stylophora pistillata	CMEO (mortalité)	8 heures	2,28	
	CMEO (développement)	24 heures	0,0228	
	CMEO (mortalité)	24 heures	0,0228 – 0,228	
	CSEO (mortalité)	24 heures	0,0228	
	CSEO (mortalité)	4 heures	0,00057	
	CSEO (mortalité)	8 heures	0,228	
Tetrahymena thermophila	CE ₅₀ (croissance)	24 heures	7,544	Gao et collab., 2013

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-3 (BP-3)						
<i>Tetraselmis</i> sp.	CE ₅₀ (croissance)	7 jours	0,153	Thorel et collab., 2020		
Vibrio aestuarianus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Vibrio azureus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Vibrio fischeri	CE ₅₀ (luminescence)	15 minutes	13,39	Zhang, Ma et collab., 2017		
	Benzop	hénone-4 (BP-4)				
Aliivibrio fischeri	CE ₅₀ (luminescence)	15 minutes	7 805	Ma, Dong et collab., 2020		
Carassius auratus	CSEO (mortalité)	28 jours	4,9	Liu, Sun et collab., 2015		
Chlamydomonas reinhardtii	CE ₅₀ (croissance)	96 heures	38	Esperanza et collab., 2019		
Chiamydomonas reinnardtii	CMEO (croissance)		30			
Chlorella vulgaris	CE ₅₀ (croissance)	96 heures	201	Du et collab., 2017		
	CE ₅₀ (croissance)	96 heures	65,16	Huang et collab 2019		
	CMEO (teneurs en caroténoides)	13 jours	20	Tuang et collab., 2010		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-4 (BP-4)						
Chlorella vulgaris	CSEO (teneurs en caroténoides)	13 jours	5	Huang et collab., 2018		
	CL ₅₀	96 heures	633	Du et collab., 2017		
	CSEO (mortalité)		3,8025			
	CSEO (longueur des adultes)	14 jouro	3 000	- Zucchi et collab., 2011a		
Danio rerio	CSEO (survie des adultes)	14 jours	3 000			
	CSEO (comportement)		3 000			
	CSEO (survie des embryons)	- 120 heures	3 000			
	CSEO (comportement)		3 000			
	CL ₅₀	48 heures	47,46	Du et collab., 2017		
		48 heures	30,4	Molins-Delgado, Gago-Ferrero et		
Daphnia magna	CE ₅₀ (mobilité)	72 heures	25,9	collab., 2016		
		48 heures	570	Liu, Sun et collab., 2015		
	CL ₅₀	48 heures	50	Fent, Kunz et collab., 2010		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-4 (BP-4)						
		24 heures	158			
Dugesia ianonica	CI	48 heures	146	Li 2012		
Dugesia japonica	CL50	72 heures	91	LI, 2012		
		96 heures	77			
Isochrysis galbana	CE ₅₀ (croissance)	72 heures	> 10	Paredes et collab., 2014		
Mytilus galloprovincialis	CE ₅₀ (développement)	48 heures	> 10	Paredes et collab., 2014		
Paracentrotus lividus	CE ₅₀ (croissance)	48 heures	> 10	Paredes et collab., 2014		
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	270	Liu, Sun et collab., 2015		
Pimenhalos prometas	CSEO (survie)		4,9	Kunz et collab., 2006		
	CSEO (poids)		1,05			
Pimephales promelas	CMEO (poids)		4,9	Kunz et collab., 2006		
	CSEO (longueur)	14 jours	1,05			
	CMEO (longueur)		4,9			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone-4 (BP-4)						
Desillenere demiserrie	CSEO (survie des adultes)	7 jours	1	Lie et collebe 2010b			
Pociliopora damicornis	CSEO (densité de zooxanthelles)	14 jours	1				
	CMEO (survie des adultes)	7 jours	≥ 1				
	CMEO (établissement larvaire)		0,01				
	CSEO (blanchiment des larves)	14 jours	1	Lie et eslich 2010h			
Senalopora callendrum	CSEO (blanchiment des adultes)		1				
	CSEO (densité de zooxanthelles)		1				
	CSEO (rétraction totale des polypes)		1				
Vibrio fischeri	CE₅₀ (luminescence)	15 minutes	858,95	Zhang, Ma et collab., 2017			
Benzophénone-6 (BP-6)							
		24 heures	35	Li 2012			
Ducesia ianonica	CL ro	48 heures	14				
Dugesia japonica		72 heures	2,1	LI, 2012			
		96 heures	2,1				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Benzophénone-7 (BP-7)						
Daphnia magna	CE ₅₀ (mobilité)	48 heures	3,17	Liu, Sun et collab., 2015		
		24 heures	3,5			
Dugesia ianonica		48 heures	1,6	Li 2012		
Dugesia japonica	GL50	72 heures	0,8	LI, 2012		
		96 heures	0,7			
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	22,24	Liu, Sun et collab., 2015		
	Benzop	hénone-8 (BP-8)				
Balanus amphitrite	CE ₅₀ (mobilité)	24 heures	2,2	Tsui et collab., 2019		
	CE ₅₀ (mobilité)	48 heures	3,55	Liu, Sun et collab., 2015		
Daprinia magna	CMEO (mortalité)	21 jours	3	Layton, 2015		
		24 heures	5,3			
		48 heures	4,4	Li, 2012		
Dugesia japonica		72 heures	3,6			
		96 heures	3,3			
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	10,48	Liu, Sun et collab., 2015		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone-8 (BP-8)						
	CMEO (survie des adultes)	Ziouro	1				
	CSEO (survie des adultes)		0,75				
Pocillopora damicornis	CMEO (rétraction totale des polypes)		1	He et collab 2010b			
	CMEO (blanchiment des adultes)	14 iours	1				
	CSEO (densité de zooxanthelles)	14 jours	0,1				
	CMEO (densité de zooxanthelles)		1				
	CSEO (survie des larves)	14 jours	1				
Seriatopora caliendrum	CL ₁₀₀ (survie des adultes)	7 ioure	1	He et collab., 2019b			
	CMEO (survie des adultes)		0,1				
Seriatopora caliendrum	CMEO (établissement larvaire)		0,01				
	CE ₅₀ (établissement larvaire)	14 jours	0,5301	He et collab., 2019b			
	CMEO (blanchiment des adultes)		0,1				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzop	hénone-8 (BP-8)		
	CMEO (blanchiment des larves)		0,25	
Societoporo coliondrum	CSEO (densité de zooxanthelles)	11 iouro	0,01	Lie et colleb 2010b
Senatopora callendrum	CMEO (densité de zooxanthelles)	14 jours	0,1	He et collab., 2019b
	CMEO (rétraction totale des polypes)		0,01	
	Benzoph	énone-10 (BP-10)		
	CL ₅₀	24 heures	1,5	
Duracsia ianonica		48 heures	1,5	Li 2012
Dugesia japonica		72 heures	1,5	LI, 2012
		96 heures	1,4	
	Benzoph	énone-12 (BP-12)		
Daphnia magna	CE₅₀ (mobilité)	48 heures	0,003	HSDB, 2020
Oryzias latipes	CL ₅₀	96 heures	0,0036	HSDB, 2020
Pseudokirchneriella subcapitata	CE ₅₀ (croissance)	72 heures	0,002	HSDB, 2020
2-hydroxybenzophénone (2HBP)				
Daphnia magna	CE ₅₀ (mobilité)	48 heures	7,89	Liu, Sun et collab., 2015

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	2-hydroxybe	enzophénone (2HBP)		
		24 heures	4,9	
Dugesia japonica	Cl ro	48 heures	3,5	Li 2012
Duyesia japonica	GL50	72 heures 3,5	LI, 2012	
		96 heures	3,5	
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	26,63	Liu, Sun et collab., 2015
Vibrio fischeri	CE ₅₀ (luminescence)	15 minutes	14,55	Zhang, Ma et collab., 2017
	3-hydroxybe	enzophénone (3HBP)		
Daphnia magna	CE ₅₀ (mobilité)	48 heures	8,64	Liu, Sun et collab., 2015
		24 heures	15,8	
Dugesia japonica	Cl ro	48 heures	9,8	Li 2012
Dugesia japonica	UL50	72 heures	8,1	LI, 2012
		96 heures	6,5	
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	21,28	Liu, Sun et collab., 2015
4-hydroxybenzophénone (4HBP)				
Chironomus riparius	CSEO (mortalité)	24 heures	10	Ozáez et collab., 2013

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
	4-hydroxybe	enzophénone (4HBP)			
	CL ₅₀	24 heures	34,7		
Chironomus riparius		48 heures	30,6	Ozáez et collab., 2014	
		96 heures	3,9		
		24 heures	20,5		
Danhaia magna	CE50	48 heures	19,3	Molins-Delgado, Gago-Ferrero et collab., 2016	
Daprinia magna	(mobilité)	72 heures	16,7		
		48 heures	9,99	Liu, Sun et collab., 2015	
	CL ₅₀	24 heures	15,8	_ Li, 2012	
		48 heures	7,1		
Dugesia japonica		72 heures	7,1		
		96 heures	4,9		
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	25,46	Liu, Sun et collab., 2015	
2,3,4'-trihydroxy benzophénone (THB)					
		24 heures			
Ducesia ianonica		48 heures	34.6	1: 0040	
συμετία μαροπικά		72 heures	54,0	LI, 2012	
		96 heures			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
4,4'-Dihydroxy benzophénone (4DHB)					
		24 heures	24	Chen et collab 2002	
Daphnia magna	CE ₅₀ (mobilité)	48 heures	12	Chen et collab., 2002	
		48 heures	68,98	Liu, Sun et collab., 2015	
		24 heures	17		
Dugosia ianonica	Cl -re	48 heures	12,3	Li 2012	
Dugesia japonica		72 heures	12,1	LI, 2012	
		96 heures	11,9		
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	17,85	Liu, Sun et collab., 2015	
	CSEO (survie)	14 jours	5,01	- Kunz et collab., 2006	
Dimenhalas promolas	CSEO (poids)		5,01		
riniepitales prometas	CSEO (longueur)		0,9		
	CMEO (longueur)		5,01		
Vibrio fischori	CE ₅₀	15 minutes	0.0	Molins-Delgado, Gago-Ferrero et	
VIDNO IISCHEN	(bioluminscence)	30 minutes	ə,ə	collab., 2016	
2,2'-dihydroxybenzophénone (2,2'-DHBP)					
Daphnia magna	CE ₅₀ (mobilité)	48 heures	6,48	Liu, Sun et collab., 2015	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
2,2'-dihydroxybenzophénone (2,2'-DHBP)						
Photobacterium phosphoreum	CE₅₀ (croissance)	15 minutes	23,50	Liu, Sun et collab., 2015		
2,4,4'-trohydroxybenzophénone (2,4,4'-THBP)						
Daphnia magna	CE₅₀ (mobilité)	48 heures	60,53	Liu, Sun et collab., 2015		
Photobacterium phosphoreum	CE ₅₀ (croissance)	15 minutes	13,78	Liu, Sun et collab., 2015		
Diéthylamino hydroxybenzoyl hexyl benzoate (DHHB)						
Artemia salina	CSEO (survie)	48 heures	2	Thorel et collab., 2020		
<i>Tetraselmis</i> sp.	CSEO (croissance)	7 jours	1	Thorel et collab., 2020		
	Acide para-an	ninobenzoïque (PABA	A)			
Pseudokirchneriella subcapitata	CE ₅₀ (croissance)	- 48 heures	724,4	Lee et Chen, 2009		
	CSEO (croissance)		8,42			
Ptychocheilus oregonensis	CL ₅₀	24 heures	10	MacPhee et Ruelle, 1969		
Ethyl PABA (Et-PABA)						
		1 heure	28			
Acipenser fulvescens	CL ₅₀	3 heures	24,2	Bills et collab., 1990		
		6 heures	20,5			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Ethyl PABA (Et-PABA)						
Acinenser fulvescens	Cl -re	24 heures	17,2	Bills at collab 1000		
Acipenser ruivescens		96 heures	17,2			
		1 heure	22,6			
		3 heures	21,9			
	CI	6 heures	21,9	Rills at callab 1000		
Cyprinus carpio	CL ₅₀	12 heures	19,3	Bills et collab., 1990		
		24 heures	19			
		96 heures	19			
	CE ₅₀	24 heures	11,2	Molins-Delgado, Gago-Ferrero et collab., 2016		
Danhaia magna		48 heures	6,8			
Daprinia magna	(mobilité)	72 heures	5,0			
		30 minutes	13,2			
		1 heure	35			
		3 heures	35			
Esox lucius		6 heures	35	Dille et colleb 1000		
	UL50	12 heures	27,5	Bills et collad., 1990		
		24 heures	24			
		96 heures	20			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Ethyl PABA (Et-PABA)						
		1 heure	34			
		3 heures	34			
-		6 heures 34				
Esox masquinongy	CL50	12 heures	34	Bills et collab., 1990		
		24 heures	34			
		96 heures	30			
	CL ₅₀	1 heure	36			
		3 heures	35			
		6 heures	29,5	Dille et colleb 1000		
iciaiurus punciaius		12 heures	29	Bills et collab., 1990		
		24 heures	28			
		96 heures	18,5			
		1 heure	26,5			
		3 heures	25			
Lepomis cyanellus	CL ₅₀	6 heures	23	Bills et collab., 1990		
		12 heures	22			
		24 heures	21,9			
Lepomis cyanellus	CL ₅₀	96 heures	20,2	Bills et collab., 1990		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Ethyl P	ABA (Et-PABA)		
		1 heure	26,5	
		3 heures	22,8	
Lonomia maaraahirua	CL	6 heures	22,8	Dille et colleb 1000
Lepomis macrochirus	CL50	12 heures	21	Bills et collab., 1990
		24 heures	21,9	
		96 heures	17	
	CL ₅₀	1 heure	32,9	
		3 heures	28,1	
Marana sayatilia		6 heures	28,1	Bills et collab., 1990
WOI OITE SAXAUIIS		12 heures	28,1	
		24 heures	28,1	
		96 heures	28,1	
		24 heures	43	
Oncorhynchus kisutch	CL ₅₀	5 jours	38,4	Dawson et Gilderhus, 1979
		10 jours	32	
		1 heure	27	
Oncorhynchus mykiss	CL ₅₀	3 heures	24,2	Bills et collab., 1990
		6 heures	23	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Eth	yl PABA (Et-PABA)		
		12 heures	22,5	
	CL ₅₀	24 heures	22,5	Bills et collab., 1990
		96 heures	11	
Opeorburchus multics	CSEO (mortalité)	3 heures	100	
Oncomynchus mykiss —	CMEO (mortalité)	10 minutes	50	Dawson et Gilderbus, 1979
	CL ₅₀	24 heures	88	
		5 jours	47	
		10 jours	42,5	
		24 heures	64,1	
Oncorhynchus tshawytscha	CL ₅₀	5 jours	46	Dawson et Gilderhus, 1979
		10 jours	44	
		1 heure	35	
		3 heures	29	
Dimonto las montos las		6 heures	26	
Pimephales prometas	GL50	12 heures	25,9	Bills et collad., 1990
		24 heures	25,9	
		96 heures	25,9	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Ethyl PABA (Et-PABA)						
		24 heures	35,4			
		48 heures	35,4	Holcombo at callab 1094		
Pimonhalos promolas	Clira	72 heures	35,4			
r intepnales prometas	CL50		35,4			
		96 heures	35,4 – 36	Geiger et collab., 1985		
			39,3	Broderius et collab., 1995		
	CMEO (rythme cardiaque)	1 heure	- 200	Cakir et Strauch, 2005		
Pana niniana		2 heures				
Nana pipiens		3 heures				
		4 heures				
	CE ₅₀ (croissance)	24 heures	≥ 25			
Raphidocelis subcapitata		48 heures	≥ 25	Molins-Delgado, Gago-Ferrero et collab., 2016		
		72 heures	≥ 25			
		24 heures	62			
Salmo trutta	CL ₅₀	5 jours	17,8	Dawson et Gilderhus, 1979		
		10 jours	14,5			
		24 heures	65			
Salvelinus namaycush	CL ₅₀	5 jours	36,5	Dawson et Gilderhus, 1979		
		10 jours	29,2			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Ethyl P	ABA (Et-PABA)		
		1 heure	37,7	
		3 heures	25,9	
Sander vitreus	CL ₅₀	6 heures	22	Bills et collab., 1990
		12 heures	22	
		24 heures	22	
Strombus gigas	CSEO (mortalité)	30 minutes	1 200	Acosta-Salmón et Davis, 2007
Vibrio fischeri	CE50 (bioluminscence)	15 minutes	12,6	Molins-Delgado, Gago-Ferrero et collab., 2016
	Octyl diméth	nyl PABA (OD-PABA)		
	CSEO (mortalité)	24 heures	10	Ozáez et collab., 2013
Chironomus riparius		24 heures	110,9	
	CL ₅₀	48 heures	81,6	Ozáez et collab., 2014
		96 heures	24,0	
	CSEO		0,025	
lsochrysis galbana	CMEO		0,1	Giraldo et collab., 2017
	CE ₅₀ (croissance)	72 heures	0,059	
	CE ₁₀ (croissance)		0,0265	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
Octyl diméthyl PABA (OD-PABA)						
	CSEO		0,025			
	CMEO		0,1			
Mytilus galloprovincialis	CE ₅₀ (développement)	48 heures	0,13	Giraldo et collab., 2017		
	CE ₁₀ (développement)		0,037			
Paracentrotus lividus	CSEO		0,1			
	CMEO	48 heures	0,2	Giraldo et collab., 2017		
	CE ₅₀ (croissance)		0,279			
	CE ₁₀ (croissance)		0,127			
		24 heures	0,07			
Raphidocelis subcapitata	CE ₅₀ (croissance)	48 heures	0,05	Molins-Delgado, Gago-Ferrero et collab., 2016		
		72 heures	0,03			
Scenedesmus vacuolatus	CE ₅₀ (croissance)	24 heures	0,17	Rodil et collab., 2009a		
3-(4-méthylbenzylidène) camphor (4-MBC)						
Algoriphagus mannitolivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Algoriphagus ornithinivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	3-(4-méthylbenzy	/lidène) camphor (4-N	IBC)	
Alteromonas genovensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Alteromonas marina	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Arthrobacter aurescens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Bacillus megaterium	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Balanus amphitrite	CE₅₀ (mobilité)	24 heures	3,9	Tsui et collab., 2019
Brachybacterium sacelli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
	CSEO (mortalité)	24 heures	10	Ozáez et collab., 2013
		24 heures	517,1	
		48 heures	120,5	Ozáez et collab., 2014
Chironomus riparius		96 heures	10,9	
	CL_{50}	24 heures	517,118	
		48 heures	120,526	Ozéoz ot collab 2016
		72 heures	48,531	02002 CI 601100., 2010
		96 heures	9,856	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	3-(4-méthylbenzy	vlidène) camphor (4-N	IBC)	
	CMEO (croissance des larves)		2,05	
Chironomus riparius	CSEO (poids des imagos femelles)	28 jours	4 17	Campos et collab., 2017a
	CMEO (poids des imagos mâles)		4,17	
Chlorella vulgaris	CSEO (croissance)	72 heures	≥ 12,5	Pablos et collab., 2015
	CE ₅₀ (malformations)	96 heures	0,28	Quintaneiro et collab., 2019
	CMEO (fréquence cardiaque)	96 heures	0,77	Quintaneiro et collab., 2019
	CL ₅₀	72 heures	5,04	Li, Tsui et collab., 2016
	CSEO (mortalité)		5	
Danio rerio	CSEO (déformations)		5	Torres et collab., 2016
	CSEO (fréquence cardiaque)	80 jours	0,5	
	CMEO (fréquence cardiaque)		5	
	CSEO (œdème péricardique)		5	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-(4-méthylbenzylidène) camphor (4-MBC)						
	CE ₅₀	48 heures	6,2	Molins-Delgado, Gago-Ferrero et		
	(mobilité)	72 heures	2,3	collab., 2016		
Daphnia magna	CSEO (alimentation)	24 heures	0,06	Pablos et collab., 2015		
	CL ₅₀	48 heures	0,56	Fent, Kunz et collab., 2010		
	CE ₁₀ (croissance)	72 hourse	0,81	Sieratowicz et collab., 2011		
Desmodesmus subspicatus	CE ₅₀ (croissance)	72 neures	7,66			
Dietzia maris	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Enterovibrio calviensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Epibacterium mobile	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Erythrobacter citreus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Erythrobacter nanhaisediminis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Halobacillus dabanensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Isochrysis galbana	CE ₁₀ (croissance)	72 heures	0,0054	Paredes et collab., 2014		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
3-(4-méthylbenzylidène) camphor (4-MBC)					
	CE ₅₀ (croissance)		0,17145		
Isochrysis galbana	CMEO (croissance)	72 heures	0,075	Paredes et collab., 2014	
	CSEO (croissance)		0,018		
Maribacter dokdoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
	CE ₁₀ (développement)	- 48 heures	0,41061	Paredes et collab., 2014	
Mutilue colloprovincialis	CE ₅₀ (développement)		0,58717		
wytitus galiopiovinciaiis	CMEO (développement)		0,6		
	CSEO (développement)		0,3		
Olleya marilimosa	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Oryzias latipes	CSEO (longueur de la génération F0)		0,005	Liang et collab., 2020	
	CMEO (longueur de la génération F0)	28 jours	0,05		
	CSEO (longueur de la génération F1)		0,05		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	3-(4-méthylbenzy	/lidène) camphor (4-M	IBC)	
	CMEO (longueur de la génération F1)		0,5	
	CSEO (poids de la génération F0)		0,5	
	CSEO (malformations de la génération F0)		0,5	
Oryzias latipes	CSEO (malformations de la génération F1)	28 jours	0,5	Liang et collab., 2020
	CMEO (mortalité de la génération F0)		0,005	
	CMEO (mortalité de la génération F1)		0,005	
	CMEO (mortalité de la génération F1)		0,005	
Paenibacillus glucanolyticus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
	CE ₁₀ (croissance)		0,23894	
Paracentrotus lividus	CE ₅₀ (croissance)	48 heures	0,85374	Paredes et collab., 2014
	CMEO (croissance)		0,6	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-(4-méthylbenzylidène) camphor (4-MBC)						
	CSEO (croissance)		0,3	Paredes et collab., 2014		
Paracentrotus lividus	CMEO (croissance)	48 heures	0,002	Torres et collab., 2016		
	CMEO (déformations)		0,0008	Torres et collab., 2016		
Paracoccus hibiscisoli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Paraglaciecola mesophila	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pelagibacterium halotolerans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	CSEO (survie)	144 heures	1,3	Martins et collab., 2017		
	CSEO (longueur)	144 heures	1,3	Martins et collab., 2017		
Phaeobacter inhibens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pimephales promelas	CSEO (survie)		0,415			
	CMEO (survie)	14 jours	0,753	Kunz et collab., 2006		
	CSEO (poids)		0,1			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-(4-méthylbenzylidène) camphor (4-MBC)						
	CMEO (poids)		0,415			
Pimephales promelas	CSEO (longueur)	14 jours	0,1	Kunz et collab., 2006		
	CMEO (longueur)		0,415			
Pseudoalteromonas agarivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pseudoalteromonas hodoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pseudomonas kunmingensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Rheinheimera baltica	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	CL ₅₀		0,00771	Santonocito et collab., 2020		
	CL ₁₀₀		0,1			
Ruditapes philippinarum	CSEO (mortalité)	10 jours	0,001			
	CMEO (mortalité)		0,01			
Sabulilitoribacter multivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	3-(4-méthylbenzylidène) camphor (4-MBC)						
Sericostoma vittatum	CMEO (diminution de 44 % du taux d'alimentation)	6 jours	2,57	Campos et collab., 2017b			
Sirialla armata	CL ₁₀		0,07163	Daradaa at collab 2014			
Sinella annala	CL ₅₀	96 neules	0,19263	Paredes et collab., 2014			
	CMEO (mortalité)	- 96 heures	0,074	Devedes et collet 2014			
Sinella armata	CSEO (mortalité)		0,03704	Faledes et collab., 2014			
	CL ₅₀		0,439				
	CL ₁₀		0,336				
	CE ₅₀ (malformations)		0,372	Araújo et collab., 2018			
	CE ₁₀ (malformations)		0,324				
Solea senegalensis	CSEO (malformations)	96 heures	0,235				
	CMEO (malformations)		0,331				
	CSEO (longueur)		0,229				
	CMEO (longueur)		0,360				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-(4-méthylbenzylidène) camphor (4-MBC)						
Salaa sanagalansis	CSEO (comportement)	06 houros	≤ 0,068	Araúia at callab 2018		
Solea selleyalelisis	CMEO (comportement)	Joneures	0,068	Alaujo el collab., 2016		
Tetrahymena thermophila	CE ₅₀ (croissance)	24 heures	5,123	Gao et collab., 2013		
	CL ₅₀		0,0929			
Tigriopus japonicus	CMEO (survie)	72 heures	0,01	Chen et collab., 2018		
Vibrio aestuarianus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Vibrio azureus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	3-benzylide	ène camphor (3-BC)				
Desmodesmus subspicatus	CE ₁₀ (croissance)	72 heures	1,33	Sieratowicz et collab., 2011		
	CE ₅₀ (croissance)	72 neures	6,99			
Pimephales promelas	CSEO (survie)		0,435	Kunz et collab., 2006		
	CMEO (survie)	14 jours	0,953			
	CMEO (poids)		0,009			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-benzylidène camphor (3-BC)						
Pimonhalos promolas	CSEO (longueur)	14 jours	0,1	Kunz et collab 2006		
	CMEO (longueur)	14 jours	0,435	Kunz et collab., 2000		
	2-éthylhe	yl salicylate (EHS)				
Artemia salina	CSEO (survie)	48 heures	2	Thorel et collab., 2020		
Daphnia magna	CMEO (mortalité)	21 jours	0,11	Layton, 2015		
	Hon	nosalate (HS)				
Algoriphagus mannitolivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Algoriphagus ornithinivorans	CMEO (croissance)	48 heures	1	Lozano et collab., 2020		
Alteromonas genovensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Alteromonas marina	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Artemia salina	CL ₅₀	48 heures	2,4	Thorel et collab., 2020		
Arthrobacter aurescens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Bacillus megaterium	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Homosalate (HS)						
Brachybacterium sacelli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Daphnia magna	CMEO (mortalité)	21 jours	0,6	Layton, 2015			
Dietzia maris	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Enterovibrio calviensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Epibacterium mobile	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Erythrobacter citreus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Erythrobacter nanhaisediminis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Halobacillus dabanensis	CMEO (croissance)	48 heures	1	Lozano et collab., 2020			
Olleya marilimosa	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Maribacter dokdoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Paenibacillus glucanolyticus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Paracoccus hibiscisoli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Homosalate (HS)						
Paraglaciecola mesophila	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Pelagibacterium halotolerans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Phaeobacter inhibens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Pseudoalteromonas agarivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Pseudoalteromonas hodoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Pseudomonas kunmingensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Rheinheimera baltica	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Sabulilitoribacter multivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
<i>Tetraselmis</i> sp.	CL ₅₀	7 jours	0,074	Thorel et collab., 2020			
Vibrio aestuarianus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Vibrio azureus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Isoamyl 4-méthoxycinnamate (IMC)							
Scenedesmus vacuolatus	CE ₅₀ (croissance)	24 heures	0,76	Rodil et collab., 2009a			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	2-éthylhexyl 4-m	éthoxycinnamate (EH	IMC)	
Algoriphagus mannitolivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Algoriphagus ornithinivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Aliivibrio fischeri	CE ₅₀ (luminescence)	15 minutes	15,87	Ma, Dong et collab., 2020
Alteromonas genovensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Alteromonas marina	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Arthrobacter aurescens	CMEO (croissance)	48 heures	1	Lozano et collab., 2020
Bacillus megaterium	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Brachybacterium sacelli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
	CSEO (mortalité)	24 heures	10	Ozáez et collab., 2013
Chironomus riparius		24 heures	116,4	
		48 heures	71,4	Ozáez et collab., 2014
	CL ₅₀	96 heures	11,1	
		24 heures	125,302	
		48 heures	51,47	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
	2-éthylhexyl 4-méthoxycinnamate (EHMC)					
Chironomus riparius	Cl -re	72 heures	21,375	Ozász et collab 2016		
Onironomus npanus		96 heures	9,433	02462 et collab., 2010		
Chlorella vulgaris	CSEO (croissance)	72 heures	≥ 1	Pablos et collab., 2015		
	CE ₅₀ (développement)		64			
Danio rerio	CSEO (développement)	96 heures	12,4	- Nataraj et collab., 2020		
	CMEO (développement)		6,2			
	CMEO (rythme cardiaque)	48 heures	62			
	CMEO (rythme cardiaque)	72 heures	62			
	CMEO (rythme cardiaque)	96 heures	62			
Daphnia magna	CSEO (mobilité)	48 heures	0,8	Louton 2015		
	CMEO (mortalité)	21 jours	0,015	Layton, 2015		
	CE₅₀ (mobilité)	24 heures	4,9	Molins-Delgado, Gago-Ferrero et		
	CE ₅₀ (mobilité)	48 heures	3,4	collab., 2016		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	2-éthylhexyl 4-méthoxycinnamate (EHMC)						
	CE ₅₀ (mobilité)	72 heures	2,9	Molins-Delgado, Gago-Ferrero et collab., 2016			
	CSEO (alimentation)	24 heures	≥ 0,12	Pablos et collab., 2015			
Daphnia magna	CE ₁₀ (mobilité)		0,14	Signatowicz at collabe 2011			
	CE ₅₀ (mobilité)	48 heures	0,57				
	CL ₅₀		0,29	Fent, Kunz et collab., 2010			
	CE ₅₀ (mobilité)		2,73	Park et collab., 2017			
Desmodesmus subspicatus	CE ₁₀ (croissance)	72 heures	0,07	Sieratowicz et collab., 2011			
Dietzia maris	CMEO (croissance)	48 heures	1	Lozano et collab., 2020			
Enterovibrio calviensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Epibacterium mobile	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Erythrobacter citreus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Erythrobacter nanhaisediminis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
------------------------------	--	-----------------------	------------------	--------------------------	--	--	--
	2-éthylhexyl 4-méthoxycinnamate (EHMC)						
Halobacillus dabanensis	CMEO (croissance)	48 heures	1	Lozano et collab., 2020			
laashrais colhana	CE ₁₀ (croissance)	70 hauraa	0,051506	Devedoe et esllek 2014			
isochrysis gaibana	CE ₅₀ (croissance)	72 neures	0,07472	Paredes et collab., 2014			
	CMEO (croissance)	– 72 heures -	0,03	Paredes et collab., 2014			
isocnrysis gaibana	CSEO (croissance)		0,015				
Maribacter dokdoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
	CE ₁₀ (développement)		0,430648				
Mutilus callonrovincialis	CE ₅₀ (développement)		3,11818	Paradas et collab 2014			
Mythus ganoprovincians	CMEO (développement)	To fieures	1				
	CSEO (développement)		0,5				
Olleya marilimosa	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Paenibacillus glucanolyticus	CMEO (croissance)	48 heures	1	Lozano et collab., 2020			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
2-éthylhexyl 4-méthoxycinnamate (EHMC)					
	CE ₁₀ (croissance)		0,04884		
Paracentrotus lividus	CE ₅₀ (croissance)	19 houros	0,28369	Paradas at callab 2014	
Falacentiolus invidus	CMEO (croissance)	40 neures	0,8	Faredes et collab., 2014	
	CSEO (croissance)		0,6		
Paracoccus hibiscisoli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Paraglaciecola mesophila	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Pelagibacterium halotolerans	CMEO (croissance)	48 heures	1	Lozano et collab., 2020	
Phaeobacter inhibens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Pimephales promelas	CSEO (survie)				
	CSEO (poids)	14 jouro	5	Kunz et collab., 2006	
	CSEO (longueur)	14 jours			
	CSEO (poids)		0,394	Christen et collab., 2011	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	2-éthylhexyl 4-m	éthoxycinnamate (EF	IMC)	
	CSEO (longueur)			
Pimephales promelas	CSEO (survie)	14 jours	0,394	Christen et collab., 2011
	CSEO (indice de condition)			
Pocillopora damicornis	CSEO (survie)			He et collab., 2019b
	CSEO (blanchiment des coraux)	7 jours	1	
	CSEO (densité des zooxanthelles)			
	CMEO (rétraction totale des polypes)			
Pseudoalteromonas agarivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Pseudoalteromonas hodoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Pseudomonas kunmingensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
		24 heures	3,7	
Raphidocelis subcapitata	CE ₅₀ (croissance)	48 heures	2,1	Molins-Delgado, Gago-Ferrero et collab., 2016
		72 heures	1,8	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
2-éthylhexyl 4-méthoxycinnamate (EHMC)						
Rheinheimera baltica	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Sabulilitoribacter multivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Scenedesmus vacuolatus	CE ₅₀ (croissance)	24 heures	0,19	Rodil et collab., 2009a		
	CMEO (survie)		1			
Seriatopora caliendrum	CMEO (blanchiment des coraux)	7 jours	1			
	CMEO (densité des zooxanthelles)		1			
	CMEO (rétraction totale des polypes)		0,01			
	CL ₁₀		0,08079			
	CL ₅₀		0,19943			
Siriella armata	CMEO (mortalité)	96 heures	0,125	Paredes et collab., 2014		
	CSEO (mortalité)		0,0625			
Tetrahymena thermophila	CSEO (croissance)	24 heures	15	Gao et collab., 2013		
Vibrio aestuarianus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
2-éthylhexyl 4-méthoxycinnamate (EHMC)						
Vibrio azureus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	Diethylhexyl b	utamido triazone (DB	T)			
Artemia salina	CSEO (survie)	48 heures	2	Thorel et collab., 2020		
<i>Tetraselmis</i> sp.	CSEO (croissance)	7 jours	1	Thorel et collab., 2020		
Octyl triazone (OT)						
Artemia salina	CSEO (survie)	48 heures	2	Thorel et collab., 2020		
<i>Tetraselmis</i> sp.	CSEO (croissance)	7 jours	1	Thorel et collab., 2020		
	Octo	ocrylène (OC)				
Algoriphagus mannitolivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Algoriphagus ornithinivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Aliivibrio fischeri	CE ₅₀ (luminescence)	15 minutes	74 231	Ma, Dong et collab., 2020		
Alteromonas genovensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Alteromonas marina	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Octocrylène (OC)						
Artemia salina	CL ₅₀	48 heures	0,6	Thorel et collab., 2020			
Arthrobacter aurescens	CMEO (croissance)	48 heures	1	Lozano et collab., 2020			
Bacillus megaterium	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Brachybacterium sacelli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
	CSEO (mortalité)	24 heures	10	Ozáez et collab., 2013			
	CL ₅₀		671,3	Ozáez et collab., 2014			
Chironomus riparius	CMEO (croissance des larves)	28 jours	2,33				
	CSEO (poids des imagos femelles)		2,33	Campos et collab., 2017a			
	CSEO (poids des imagos mâles)		2,33				
Daphnia magna	CE₅₀ (mobilité)	48 heures	3,18	Park et collab., 2017			
Danio rerio	CSEO (survie)	16 jours	0,383	Bluthgon at callab 2014			
	CSEO (comportement)		0,383	Biulingen et collab., 2014			
	CSEO (survie)	28 jours	1,25	Zhang, Ma et collab., 2016			

Organisme	Paramètre	nètre Durée Valeur d'exposition (mg/l)		Référence	
Octocrylène (OC)					
Danio rerio	CSEO (comportement)	28 jours	1,25	Zhang, Ma et collab., 2016	
Dietzia maris	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Enterovibrio calviensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Epibacterium mobile	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Erythrobacter citreus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Erythrobacter nanhaisediminis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
Halobacillus dabanensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	
	CSEO		0,04	Giraldo et collab., 2017	
	CMEO	-	0,08		
Isochrysis galbana	CE ₅₀ (croissance)	72 heures	≥ 0,15		
	CE ₁₀ (croissance)		0,103		
Maribacter dokdoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Octocrylène (OC)						
	CSEO		0,02				
	CMEO		0,04				
Mytilus galloprovincialis	CE ₅₀ (développement)	48 heures	≥ 0,65	Giraldo et collab., 2017			
	CE ₁₀ (développement)		0,511				
Olleya marilimosa	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
	CSEO (longueur de la génération F0)		0,5				
	CMEO (longueur de la génération F1)		0,5				
	CSEO (poids de la génération F0)		0,5				
Oryzias latipes	CSEO (malformations de la génération F0)	28 jours	0,5	Yan et collab., 2020			
	CMEO (malformations de la génération F1)		0,005				
	CMEO (mortalité de la génération F0)		0,5				
	CMEO (mortalité de la génération F1)		0,005				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Octocrylène (OC)						
Oryzias latipes	CMEO (mortalité de la génération F1)	28 jours	0,005	Yan et collab., 2020			
Paenibacillus glucanolyticus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Paracoccus hibiscisoli	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Paraglaciecola mesophila	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
	CSEO (croissance)	48 heures	0,02				
Paracontratus lividus	CMEO (croissance)		0,04	Ciroldo et collob 2017			
Faracentrolus innuus	CE ₅₀ (croissance)		0,737	Giraido et collab., 2017			
	CE ₁₀ (croissance)		0,162				
Pelagibacterium halotolerans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Phaeobacter inhibens	CSEO (croissance)	48 heures	1	Lozano et collab., 2020			
Pocillopora damicornis	CSEO (survie)	7 iours	1	He et collab., 2019b			
	CSEO (blanchiment des coraux)	7 jouis	I				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
	Octocrylène (OC)					
Dooillonoro domisornia	CSEO (densité des zooxanthelles)	7 iouro	1	He at called 2010b		
Pochiopora damicornis	CMEO (rétraction totale des polypes)	7 jours	I			
Pseudoalteromonas agarivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pseudoalteromonas hodoensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Pseudomonas kunmingensis	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Rheinheimera baltica	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
Sabulilitoribacter multivorans	CSEO (croissance)	48 heures	1	Lozano et collab., 2020		
	CSEO (survie)					
Seriatopora caliendrum	CSEO (blanchiment des coraux)	7 ioure				
	CSEO (densité des zooxanthelles)		I			
	CMEO (rétraction totale des polypes)					
Tetrahymena thermophila	CSEO (croissance)	24 heures	15	Gao et collab., 2013		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Octo	ocrylène (OC)		
Vibrio aestuarianus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Vibrio azureus	CSEO (croissance)	48 heures	1	Lozano et collab., 2020
Butyl-méthoxy dibenzoylméthane (BMDM)				
Artemia salina	CL ₅₀	48 heures	1,8	Thorel et collab., 2020
Danio rerio	CSEO (survie)	48 heures	1 000	Kaiser et collab., 2012
Daphnia magna	CE ₅₀ (mobilité)	48 heures	1,95	Park et collab., 2017
	CL ₅₀		0,74	Layton, 2015
<i>Tetraselmis</i> sp.	CSEO (croissance)	7 jours	1	Thorel et collab., 2020

CE₁₀: concentration d'une substance susceptible de causer un effet chez 10 % des organismes d'essai;

CE₂₀: concentration d'une substance susceptible de causer un effet chez 20 % des organismes d'essai;

CE₂₅: concentration d'une substance susceptible de causer un effet chez 25 % des organismes d'essai;

CE₅₀: concentration d'une substance susceptible de causer un effet chez 50 % des organismes d'essai;

CE₉₀: concentration d'une substance susceptible de causer un effet chez 90 % des organismes d'essai;

CL₁₀: concentration létale d'une substance pour 10 % des organismes d'essai;

CL₂₀: concentration létale d'une substance pour 20 % des organismes d'essai;

CL₅₀: concentration létale d'une substance pour 50 % des organismes d'essai;

CL₁₀₀: concentration létale d'une substance pour 100 % des organismes d'essai;

CMEO : concentration minimale avec effet observé;

CSEO : concentration sans effet observé.

Organisme Paramètre		Durée d'exposition	Valeur (mg/l)	Référence
	Benzophénone (BP)			
Salmonella typhimurium souche TA97	CSEO (génotoxicité sans activation métabolique)	2 houros	500	Wang Duap at callab 2018
	CSEO (génotoxicité avec activation métabolique)		500	Wang, Duan et Collab., 2016
Salmonella typhimurium souche TA98	CSEO (génotoxicité sans activation métabolique)			Wang Duap at callab 2019
	CSEO (génotoxicité avec activation métabolique)	2 heures	500	Wang, Duan et collab., 2010
	CSEO (génotoxicité)			Nakajima et collab., 2006
	CSEO (génotoxicité)		500	Nakajima et collab., 2006
Salmonella typhimurium souche TA100	CSEO (génotoxicité sans activation métabolique)	2 heures		Wang, Duan et collab., 2018
	CSEO (génotoxicité avec activation métabolique)			
Salmonella typhimurium souche TA102	CMEO (génotoxicité sans activation métabolique)	2 houros	0,05	Wang Duan et collab 2018
	CSEO (génotoxicité avec activation métabolique)		500	- Wang, Duan et collab., 2010
	CMEO (génotoxicité)	2 heures	769,23	Zhao et collab., 2013
Salmonella typhimurium souche TA1535	CMEO (génotoxicité sans activation métabolique)	2 heures	10,61	Zhang, Ma et collab., 2017

Tableau 23 – Génotoxicité des filtres UV pour les organismes aquatiques

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzophénone-1 (BP-1)			
Salmanalla tunhimurium aquaha TA07	CMEO (génotoxicité sans activation métabolique)		0,05	Wang Duan at callab 2019
Saimonella typnimunum souche TA97	CSEO (génotoxicité avec activation métabolique)		500	Wang, Duan et collab., 2016
Salmonella typhimurium souche TA98	CSEO (génotoxicité sans activation métabolique)			Wang, Duan et collab., 2018
	CSEO (génotoxicité avec activation métabolique)		500	
	CSEO (génotoxicité)	2 houros		Nakajima et collab., 2006
	CSEO (génotoxicité)	2 neures	500	Nakajima et collab., 2006
Salmonella typhimurium souche TA100	CMEO (génotoxicité sans activation métabolique)		0,5	
	CSEO (génotoxicité avec activation métabolique)		500	Wang Duan at callab 2018
Salmonella typhimurium souche TA102	CSEO (génotoxicité sans activation métabolique)		500	Wang, Duan et collab., 2010
	CSEO (génotoxicité avec activation métabolique)		500	
Salmonella typhimurium souche TA 1535	CMEO (génotoxicité)	2 heures	102,04	Zhao, Wei et collab., 2013

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	Benzophénone-2 (BP-2)			
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	81,97	Zhao, Wei et collab., 2013
	CE ₂₀ (dommages à l'ADN)		0,000004 – 0,000052	
Studenhare nistillate	CE ₅₀ (dommages à l'ADN)	0 houroo	0,0018 – 0,0086	Downo at callab 2014
Stylophora pistillata	CMEO (dommages à l'ADN)	oneures	0,0246 – 0,246	Downs et collab., 2014
	CSEO (dommages à l'ADN)		0,0246	
	Benzophénone-3 (BP-3)	•	•	
Carassius auratus	CSEO (dommages à l'ADN)	8 heures	0,0228	Downs et collab., 2016
Poecilia raticulata	CMEO (dommages à l'ADN)	06 bourss	0,0001	Almeide et cellet 2010
	CMEO (anomalies nucléaires érythrocytaires)	30 neures	0,001	
Salmonella typhimurium souche TA98	CSEO (génotoxicité)		500	Nakajima et collab., 2006
Salmonella typhimurium souche TA100	CSEO (génotoxicité)		500	Nakajima et collab., 2006
	CMEO (génotoxicité)	2 heures	357,14	Zhao et collab., 2013
Salmonella typhimurium souche TA1535	CSEO (génotoxicité sans activation métabolique)		4,96	Zhang, Ma et collab., 2017
Stylophora pistillata	CMEO (dommages à l'ADN)	8 heures	0,0228 – 0,228	Downs et collab., 2016

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
	Benzophénone-4 (BP-4)					
	CMEO (génotoxicité)		> 1 000	Zhao et collab., 2013		
Salmonella typhimurium souche TA1535	CMEO (génotoxicité sans activation métabolique)	2 heures	113,75	Zhang, Ma et collab., 2017		
	Benzophénone-6 (BP-6)					
Salmonella typhimurium souche TA98	CSEO (génotoxicité)	2 houros	500	Nakajima at collab 2006		
Salmonella typhimurium souche TA100	CSEO (génotoxicité)	2 neures	500	Nakajima et collab., 2000		
Benzophénone-8 (BP-8)						
Salmonella typhimurium souche TA98	CSEO (génotoxicité)		500	Nakajima et collab., 2006		
Salmonella typhimurium souche TA100	CSEO (génotoxicité)	2 heures	500			
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)		625	Zhao et collab., 2013		
	Benzophénone-12 (BP-12)					
Salmonella typhimurium souche TA98	CSEO (génotoxicité)		500	Nakajima at collab 2006		
Salmonella typhimurium souche TA100	CSEO (génotoxicité)	2 heures	500	Nakajima et collab., 2000		
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)		> 500	Zhao et collab., 2013		
2-hydroxybenzophénone (2HBP)						
Salmonella typhimurium souche TA 1535	CMEO (génotoxicité)		714,29	Zhao et collab., 2013		
Salmonella typhimurium souche TA1535	CMEO (génotoxicité sans activation métabolique)	2 heures	9,52	Zhang, Ma et collab., 2017		
	3-hydroxybenzophénone (3H	BP)				
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	625	Zhao et collab., 2013		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
4-hydroxybenzophénone (4HBP)					
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	384,62	Zhao et collab., 2013	
	2,3,4'-trihydroxy benzophénone	(THB)			
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	92,03	Zhao et collab., 2013	
	4,4'-Dihydroxy benzophénone (4	IDHB)			
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	294,18	Zhao et collab., 2013	
	2,2'-dihydroxybenzophénone (2,2'	-DHBP)			
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	312,5	Zhao et collab., 2013	
2,4,4'-trohydroxybenzophénone (2,4,4'-THBP)					
Salmonella typhimurium souche TA1535	CMEO (génotoxicité)	2 heures	98,04	Zhao et collab., 2013	
CMEO : concentration minimale avec effet observé; CSEO : concentration sans effet observé.					

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone-2 (BP-2)						
	CSEO (indice gonadosomatique des mâles)		5,0				
	CMEO (indice gonadosomatique des mâles)		9,7				
	CSEO (indice gonadosomatique des femelles)		1,2				
Pimephales promelas	CMEO (indice gonadosomatique des femelles)	15 jours	5,0	- Weisbrod et collab., 2007			
	CSEO (spermatocytes)		1,2				
	CMEO (spermatocytes)		5				
	CSEO (nombre de cellules germinales)		0,1				
	CMEO (nombre de cellules germinales)		1,2				
	Benzophé	none-3 (BP-3)					
Retta splandens	CSEO (indice gonadosomatique)	28 jours	1	Chan at collab 2016			
Della spiendens	CMEO (proportion de spermatozoïdes matures)	20 jours	0,1				
Chironomus riparius	CSEO (émergence)	28 jours	3,41	Campos et collab., 2017a			

Tableau 24 – Potentiel de perturbation endocrinienne des filtres UV pour les organismes aquatiques

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
	Benzophénone-3 (BP-3)						
China na mua vina vina	CSEO (temps de développement des mâles)	20 iouro	2.44				
Chironomus npanus	CMEO (temps de développement des femelles)	– 28 jours	3,41	Campos et collab., 2017a			
Danio rerio	CE ₅₀ (éclosion des embryons)	21 jours	12,39	Balázs et collab., 2016			
	CSEO (reproduction)		0,5	Sigratowicz of collab. 2011			
	CMEO (reproduction)		> 0,5				
Daphnia magna	CSEO (reproduction)	21 iouro	≥ 0,2	Pablos et collab., 2015			
Daphilla magha	CMEO (nombre de néonates)	21 jours	10				
	CMEO (production de mâles)		5	Layton, 2015			
	CMEO (délai de la première ponte)		6				
		13 jours	0,132				
	СМЕО	14 jours	0,132				
Oryzias laupes	(éclosion)	15 jours	0,016				
		21 jours	0,62				

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
Benzophénone-3 (BP-3)					
		11 jours	0,62		
		12 jours	0,62		
Oryzias latipes	CSEO (éclosion)	13 jours	0,016	Coronado et collab., 2008	
		14 jours	0,016		
		21 jours	0,132		
	Benzophénone-4 (BP-4)				
Daphnia magna	CSEO (reproduction)	21 jours	5	Fent, Kunz et collab., 2010	
	Benzophé	none-8 (BP-8)			
	CSEO (production de mâles)	21 jours	3		
Daphnia magna	CSEO (délai de la première ponte)		0,75	Layton, 2015	
	CMEO (nombre de néonates)		1,5		
4-hydroxybenzophénone (4HBP)					
Chironomus riparius	CSEO (éclosion)	120 heures	1	Ozáez et collab., 2014	
Octyl dimethyl PABA (OD-PABA)					
Chironomus riparius	CSEO (éclosion)	120 heures	1	Ozáez et collab., 2014	

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-(4-méthylbenzyldiène camphor (4-MBC)						
	CSEO (éclosion)	120 heures	1	Ozáez et collab., 2014		
Chironomus rinorius	CSEO (émergence)					
Chironomus npanus	CSEO (temps de développement des mâles)	28 jours	4,17	Campos et collab., 2017a		
	CMEO (temps de développement des femelles)					
Danio rerio	CSEO (éclosion)	80 jours	0,5	Torres et collab., 2016		
	CMEO (diminution de 39 % du taux d'éclosion)		5			
	CSEO (reproduction)		0,02	Fent, Kunz et collab., 2010		
			0,015	Pablos et collab., 2015		
Daphnia magna		21 jours	0,1			
	CMEO (reproduction)		0,2	Sieratowicz et collab., 2011		
Lumbriculus variegatus	CSEO (reproduction)	28 jours	1,47	Schmitt et collab., 2008		
Oryzias latipes	CSEO (fertilité)	28 jours	0,05	Liang et collab 2020		
	CSEO (fécondité)	28 jours	0,05	Liang et collab., 2020		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence
	3-(4-méthylbenzyld	liène camphor (4-MBC)		
	CMEO (fertilité)		0,5	
	CMEO (fécondité)		0,5	
	CSEO (temps d'éclosion de la génération F0)		0,005	
Oryzias latipes	CMEO (temps d'éclosion de la génération F0)	28 jours	0,05	Liang et collab., 2020
	CSEO (temps d'éclosion de la génération F1)		0,05	
	CMEO (temps d'éclosion de la génération F1)		0,5	
	CMEO (spermatogenèse)		0,05	
Potamopyrgus antipodarum	CSEO (reproduction)	56 jours	0,26	Schmitt et collab., 2008
Pelophylax perezi	CSEO (taux d'éclosion)	144 heures	1,3	Martins et collab., 2017
Saccharomyces cerevisiae	CE ₁₀ (potentiel œstrogénique)	24 hourse	6,6	Sobmitt at callab 2009
	CE ₅₀ (potentiel œstrogénique)		11,3	Schmitt et collab., 2008

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
3-benzyldiène camphor (3-BC)						
	CSEO (reproduction)		0,1			
Daphnia magna	CMEO (reproduction)	21 jours	0,2	Sieratowicz et collab., 2011		
	CE ₁₀ (reproduction)		0,45			
Lumbriculus variegatus	CSEO (reproduction)	- 28 jours	1,49	Schmitt at callab 2008		
Lumbriculus variegalus	CE ₅₀ (reproduction)		1,43			
Potamopyrgus antipodarum	CSEO (reproduction)	56 jours	0,06	Schmitt et collab., 2008		
Saccharomycas caravisiaa	CE ₁₀ (potentiel œstrogénique)	- 24 heures	0,16	Schmitt et collab., 2008		
Saccharonyces cerevisiae	CE ₅₀ (potentiel œstrogénique)		0,59			
	2-éthylhexyl salicylate (EHS)					
Daphnia magna	CSEO (délai de la première ponte)		0,22			
	CSEO (production de mâles)	21 jours	0,22	Layton, 2015		
	CMEO (nombre de néonates)		0,11			

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence	
	Homos	alate (HS)			
	CSEO (délai de la première ponte)		0,075		
Daphnia magna	CSEO (production de mâles)	21 jours	0,06	Layton, 2015	
	CMEO (nombre de néonates)		0,3		
2-éthylhexyl 4-méthoxycinnamate (EHMC)					
Arthrobacter globiformis	CSEO (activité de la déshydrogénase)	48 heures	1 000	Kaiser et collab., 2012	
	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012	
	CSEO (éclosion)	120 heures	1	Ozáez et collab., 2014	
Danio rerio	CSEO (survie)	18 heures	1 000	Kaiser et collab., 2012	
Danio reno	CMEO (malformations)	40 fieures			
Daphnia magna	CSEO (reproduction)		≥ 0,015	Pablos et collab., 2015	
	CSEO (reproduction)	21 jours	0,04	Signatowicz at collab 2011	
	CMEO (reproduction)		0,08		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence		
2-éthylhexyl 4-méthoxycinnamate (EHMC)						
	CSEO (reproduction)		0,02	Fent, Kunz et collab., 2010		
Dophnia magna	CMEO (nombre de néonates)	21 iouro	0,03			
Daprinia magna	CSEO (production de mâles)		0,03	Layton, 2015		
	CMEO (délai de la première ponte)		0,3			
Lumbriculus variegatus	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012		
	CMEO (reproduction)	28 jours	10	Kaiser et collab., 2012		
	CSEO (reproduction)	20 jours	2			
Pimephales promelas	CSEO (indice gonadosomatique des mâles)	14 jours	0,394	Christen et collab., 2011		
Potomonurgus antipodarum	CMEO (reproduction)	56 jours	0,4	Kaiser et collab., 2012		
Polamopyrgus anupodarum	CSEO (reproduction)	50 jours	0,08			
Octocrylène (OC)						
Arthrobacter globiformis	CSEO (activité de la déshydrogénase)	48 heures	1 000	Kaiser et collab., 2012		

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence				
Octocrylène (OC)								
Chironomus riparius	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012				
	CMEO (éclosion)	120 heures	1	Ozáez et collab., 2014				
	CSEO (émergence)	28 jours	2,33	Campos et collab., 2017a				
	CSEO (temps de développement des mâles)							
	CSEO (temps de développement des femelles)							
Danio rerio	CSEO (survie)	48 heures	1 000	Kaiser et collab., 2012				
	CSEO (taux d'éclosion)	16 jours	0,383	Bluthgen et collab., 2014				
Lumbriculus variegatus	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012				
Melanoides tuberculata	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012				
Oryzias latipes	CSEO (fertilité)	28 jours	0,5	Yan, Liang et collab., 2020				
	CMEO (fécondité)		0,005					
	CSEO (temps d'éclosion de la génération F0)		0,5					

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence					
	Octocrylène (OC)								
Oryzias latipes	CMEO (temps d'éclosion de la génération F0)	- 28 jours	0,05	Yan, Liang et collab., 2020					
	CMEO (spermatogenèse)		0,05						
Potamopyrgus antipodarum	CSEO (reproduction)	56 jours	50	Kaiser et collab., 2012					
	Butyl-méthoxy dibenzoylméthane (BMDM)								
Arthrobacter globiformis	CSEO (activité de la déshydrogénase)	48 heures	1 000	Kaiser et collab., 2012					
Chironomus riparius	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012					
	CMEO (production de mâles)	21 jours	0,004	Layton, 2015					
Daphnia magna	CMEO (nombre de néonates)		0,016						
	CMEO (délai de la première ponte)		0,22						
Lumbriculus variegatus	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012					
Melanoides tuberculata	CSEO (reproduction)	28 jours	50	Kaiser et collab., 2012					

Organisme	Paramètre	Durée d'exposition	Valeur (mg/l)	Référence			
Butyl-méthoxy dibenzoylméthane (BMDM)							
Potamopyrgus antipodarum	CSEO (reproduction)	56 jours	50	Kaiser et collab., 2012			

CE₁₀: concentration d'une substance susceptible de causer un effet chez 10 % des organismes d'essai;

CE₅₀: concentration d'une substance susceptible de causer un effet chez 50 % des organismes d'essai;

CMEO : concentration minimale avec effet observé;

CSEO : concentration sans effet observé.

Environnement et Lutte contre les changements climatiques Québec 🏘 🛊

